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Time-Delay Dynamic Quadratic Neural Unit for Adaptive Monitoring of
ECG
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Abstract

This paper is focused on adaptation of the noveladyc neural model (Time-Delayed Dynamic
Quadratic Neural Unit) and a novel application pext to adaptive evaluation of bio-signals. The
adaptation learning technigue of the neuron willdeeived and experimentally verified. The novel
prospect of adaptive evaluation of ECG using th@raleadaptive model and independent component
analysis is discussed.
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1. INTRODUCTION

Diagnostic and prediction systems are nowadays usedarious applications in
different fields of study. Medicine, particularlge study of cardiovascular system, is not the
exception. The paper is focused on adaptation ofirmeous time-delayed quadratic dynamic
neural unit for the task of ECG prediction and thHos new extensions of the adaptive
methodology for arrhythmia detection and classiftca Quadratic Neural Unit (QNU) [1]-
[3] is a nonconventional neural architecture thah de considered a special class of
polynomial neural network or a special neural wifihigher order neural networks that are
getting popular today in the field of artificial u@l networks [13]-[16]. Continuous Time-
Delayed Dynamic Quadratic Neural Unit (TmD-DQNU)]-[3] is a non-conventional
dynamic single-neuron model. The model has a vwelgtisimple mathematical structure and
its approximation qualities of a nonlinear and dyiabehavior are superior to conventional

models of neurons due to its quadratic aggregatiatture and adaptable time delays.
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Figure 1: Schematics of continuous-time TmD-DQNUplausible understanding to the parallel between
biological neurons and quadratic (higher order)linearity was proposed in [1]-[3].

2. TMD-DQNU AND ITS ADAPTATION

A version of the neural model described above amows in Figure 1 can be
described mathematically as follows. The neurapoug,(t) can be calculated using dynamic
equation according to the formula bellow:

¥o(t) = [ (x()T Wx (D)) dt

= [ (oo + W () + Wi, M= T+ W, GO+ woax gt B+ w Xt D) «
(1.1)

1
Where column vectox(t) =| u(t) represents inputs to the neuron and upper
y(t=T,)
WOO WOl W02
triangular matrixW =| 0w, w, |represents weights that have to be adapted.
0 0 w,

For the adaptation of weights and time-delay, gnaidadaptation method, also called
RTRL (Real Time Recurrent Learning) [8]-[10] wagdsAccording to this method, updated
weights in each step of learning are calculatedraicg to the formula below:

W (2.1)

= V\/ij + Aw.

ij?
and the weight increments can be calculated asvsll

;
ox Wx +x" gﬂx + xTWﬁ]dt
i
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Aw; = ﬂe(t)% = pe(t) j %(XTWX)dt = pe(t) j (

(2.2)
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For example, the weight incremem, can be derived as
Oyn(t)
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The adaptation of the time-delay can be derivedlaiiy as in the case of weights as
T, =T, +AT,, (2.9)
and the time-delay increment can be expressedlas/fo
ay, ()
AT, t
= pe()—— aT,
(-T) oy,(t- ) oy T) e
—ue(t)j(v\gzy— ()2 ) oy AL 1 ]
d d d

The formula for time-delay increment can be furtegpressed as shown in formula
(2.11) below:

AT, = pe()[ (-2 Ty (- T)- w2 eyt F)- wa TN+ H ¥+t D) .
(2.11)
because the partial derivati\,%/”g_r;-rd) =-y,(t—T,) can be also derived by Laplace

d
domain, as it is obvious from the summaryable 2.1

Table 2.1: Derivation of time delay partial deriixad in Laplace domain

Original Laplace
Ya(t—Ty) Y, (9"
Ya(t—Ty) Y,(9e"s
oy, (t—Ty) 0

LN e
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3. PROBLEM FORMULATION AND SOLVING

Main purpose of the paper is to derive and expearially verify the adaptation
process of TmD-DQNU in order to sample-by-samplenitoo changes of dynamics of bio-
signals such as ECG. The supervised learning isdbas adaptation of neural output signal
yn(t) to real signalyea(t). Error et) =vy.,(t) -y, t)of these two signals is used for

adaptation of neural weights in weight matii% and adaptation of time delayy.
The methodology based on adaptive ECG predictidh bei tested on two types of input
signals. In the first tested methodology it is @assd that a sine input is fed into the neuron
and neural output will be compared with known sigha the second methodology a time-
delayed artificial ECG signal is used as an inguhe neuron and neural output is compared
to non-delayed artificial ECG signal. Last methodrkg with real ECG signal, where time-
delayed ECG signal is fed to the neuron and neougbut value is compared with non-
delayed ECG signal.

3.1. Model with known real signal

As it was described above, a periodical sine waie= sin(wt +¢) enters neuron and

obtained neural output is compared to known si¢ima has a same structure as neuron has.
This can be expressed schematically as is showkigare 2 below and known signal is
represented by the following equation:

Ve (t)= 01+ 01sin(t) - 01y, (t 1)+ 0.sin?(t) - 0.1sin(t)y?(t —1)- 0.1y?(t -1)
(3.1.1)

With ascending time weights wij and time-delay Tdajt according to equations
described in chapter 2 and sine signal on the iaptite neuron is transformed to the shape of
a real signal.

Yreal (1)

u(f) = sin(a)r + go) \
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Figure 2: Schematics of continuous-time Time-Defawadratic Neural Unit fed by a sine input. The aéur
outputy,(t) is compared to the real signgl,(t), error signak(t) is computed and weights and a time delay are
adapted.
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Comparison of real signal and signal from neuron in time
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Figure 3: Comparison of neural output sigynalyonand known signak.,. Signal derived from the neuron
synchronizes with known signal.
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Adaptation of weights in time
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Figure 4: Adaptation of weights and the time dekdiyparameters settled on some certain valueslanbt
change in time while changes of known real signalnmt present.

Described methodology is simulated and tested inTMRB Simulink software for
time of 300 sec. The neural output compared taehesignal is shown ifigure 3 Even if
both signals do not match perfectly, it is obvithet neural output synchronized with desired
signal, thus the neuron is capable of adaptatighdgcsignal Figure 4 displays a progress of
adaptation of weights and the time delay; all patans settled on certain values and do not
change rapidly.

3.2. Model with artificial ECG

The second methodology described previously ischkeet in schematics shown in
Figure 5 It represents the artificially created ECG timedayed signal as input into the
neuron. This signal is delayed by a variable tirakayg thus this set-up allows a prediction of
the current state of ECG to occur.
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Figure 5: Schematics of a continuous-time Time-R&Jaadratic Neural Unit fed by
time-delayed ECG signal input. The neural outputampared to the real ECG signal, error
signal is computed and weights and the time detayaaapted. Time-delay of input ECG
signal causes a prediction of a current stage @ Bi©-signal.

Neural output value is compared to artificial ECi@nal and both behaviors are
displayed inFigure 6 As in the methodology shown above, neuron is alde to adapt and
synchronize to the artificial ECG signal, while a#ights and time delays of ECG signal and
neural output settle on certain values, as is aysa inFigure 7.

Comparison of a real ECG signal and signal from neuron
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Figure 6: Comparison of neural output signal anifically created ECG signal. Both signals are coment.

Progress of time-delays is shownFigure 8and from the behaviors it is obvious that
delayT; of ECG input settles to value close to zero, lagT, of neural output fluctuates
more frequently and needs more epochs to run ierdodsettle on some certain value.

For the complete image of model behavior a progoéssror is also shown, as can be
seen in
Figure 9 The error between desired ECG value and outpat the neuron decreases while
time grows.
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Adaptation of weights in time
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Figure 7: Adaptation of weights while a time-deldyatificial ECG signal is used as an input valu¢hie
neuron.
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Figure 9: Progress of error signal between neurgduwd value and measured ECG signal during adaptédi
ECG. The error decreases with increasing time.

3.3. Model with real ECG

Last tested model used real ECG [12] signal thatuded arrhythmias. Firstly, neuron
learned on part of the ECG signal without arrhytsmand when weights and time-delays of
the neuron adapted, a full ECG signal includingtpavith arrhythmias was fed into the

neuron Figure 10shows the schematic sketch of the setup of theemod
P )= ECG()
u(f) =ECGG-T,,)

1

Figure 10: Schematics of a continuous-time TmD-DQfd by time-delayed real ECG signal. The neural
output is compared to the non-delayed real ECGatign

TmD-DQNU
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The real ECG signal with arrhythmias can be sedrigare 11.The very beginning
displays typical sine rhythm and this part sernvadadaptation process of the neuron. Further
a spontaneous VT arrhythmia occurs and is followedhtentional stroke from defibrillator.
This stroke starts the VT arrhythmia that is stappg a second stroke by defibrillator. After
this stroke a normal sine rhythm follows.
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Figure 11: Real ECG record [12] with spontaneougnieular tachycardia and defibrillator strokes.

In the learning process neuron adapted on a sitbmhsimilarly as in case of the
artificial ECG signal above. After the whole rec@fdECG was applied as an input into the
neuron and for the comparison at the output, weighperienced change in the adaptation
process in the moment when spontaneous VT arrhgtlocgurred as can be seen in detail on
Figure 12.Due to rapid changes in adaptation of weightspifesence of arrhythmia can be
observed and detected.

BecauseFigure 12 shows that some weights are more sensitive toytamha and
some weights less, a possible application of tiiependent Component Analysis (ICA) [9]
will be discussed in further work. With ICA only wts with significant influence can be
filtered out and on these bases the differences ftandard ECG can be observed.
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Adaptation of weights in time
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Figure 12: Adaptation of weights and time-delaysirdy run of neuron with ECG record that includes
arrhythmias. Huge peaks can be observed in pladese defibrillator strokes were applied. At thejib@ing of
spontaneous arrhythmia it is possible to note chaimgadaptation of weights.

RESEARCH PROSPECTIVE

Paper shows derived adaptation of Time-Delayed €atiad\Neural Unit. Future work
that concurs on the adaptation is investigatioradéptive evaluation of ECG signal by
continuous-time TmD-QNU. Obtained weights from #daptation process can be observed
and further processed using Independent Componealysis (ICA) [10] and [11]. Because
particular weights differ according to the impoxtanand influence on output signal, only
weights with significant influence on the signaé aonsidered With ICA analysis, the new
adaptive methodology of monitoring and evaluatiboanplex dynamic may be significantly
improved and importantly extended.
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