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Used Symbols and Terms 

ANS  …  Autonomous nervous system 

BP   … Backpropagation learning algorithm 

CD   … Correlation dimension. 

CNU  … Cubic neural unit 

DNU  … Dynamic neural unit 

ED   … Embedding Dimension 

FFNN  … Feed-Forward Neural Networks 

HONNU … Higher-order nonlinear neural unit, (where “order” relates to the 

           order of  the polynomial or the level of nonlinearity aggregating 

           function) 

DHONNU  … Dynamic HONNU, i.e., HONNU with time integration of  

    nonlinear aggregation that is also used as the unit’s state feedback 

HRV  … Heart Rate Variability 

LLE  … Largest Lyapunov exponents 

MFNN  … Multi-Layer Feed Forward Neural Networks 

MLP  … Multi-Layer Perceptron (common architecture of NN) 

NDE  … Nonlinear differential equation 

Neural Unit  … Artificial neuron 

NN   … (Artificial) Neural networks 

QNU  … Quadratic neural unit 

TmD-DNU … Dynamic neural unit with time delays  as adaptable neural  

            parameters 

TmD-DHONNU … Time-delay dynamic higher-order nonlinear neural unit 

TmDNN  … Time-delay dynamic neural networks 

TmD-DNN  … TmDNN 

TDNN  … Tapped-delay neural networks, i.e., conventional NN with delays  

                        in interlayer connections 
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Goals of the Thesis 

he research work proposed in this thesis has been pursuing the need for novel 

evaluation of complex systems that generate complex output signals featuring chaos, 

multi-attractor behavior, external and internal perturbations,...  

The research has shown that the adaptive evaluation of variability of chaotic time series is a 

very promising direction.  

1) As the first objective of this thesis, the theory of the proposed neural units is established. The 

need for this theory comes from the requirements for the general nonlinear approximation 

(identification) of complicated nonlinear dynamic systems with minimum number of network 

parameters, the simplicity of neural network architecture, a practical technique for stable 

learning algorithm applied to general class of nonlinear aggregating functions, and the 

capability to implement apriori knowledge about an investigated system into a neural unit or 

a network. The prospects are demonstrated in the application to fast state-feedback neural 

control of nonlinear plant with variable parameters, in the application to adaptable 

identification of nonlinear dynamics of parallel tripod manipulator, and in the identification 

of time-delays within systems or approximation of complex systems by time-delayed 

systems. The first main objective of this thesis can be more particularly categorized as 

follows: 

1.1) To develop a tool capable of describing complex systems with focus on the minimum 

number of neural parameters and with sufficient approximating capability, 

1.2) To benefit from cognitive capabilities of artificial neural network tools, and 

1.3) To maintain the simplicity of mathematical notation of a problem consisting in a low 

number of parameters and a simple dynamic structure.  

2) The second objective of this work is to introduce these new artificial neural architectures 

as a tool applicable to fast monitoring of changes in levels of variability in signals generated 

by complex dynamic systems. The advantage over commonly available methods of 

nonlinear analysis is the adaptive monitoring of actual changes in system dynamics, 

especially for systems displaying multi-attractor behavior, such as the human cardiovascular 

system. This second main objective can be categorized as follows: 

2.1) To develop a tool reflecting important characteristics of the dynamics as well as 

appropriately responding to sudden and continuous changes in dynamics of complex 

systems in real time, and 

2.2) To establish foundations for a novel method for the variability evaluation of complex 

signals. 

The thesis introduces nonconventional utilization of the gradient-descent backpropagation 

learning algorithm resulting in:  

1. the theoretical development, 

2. the systematic approach to and the proposal for standardization, and 

3. the practical utilization 

of the nonconventional artificial neural architectures for approximation and for further 

assessment of dynamic systems. The nonconventional neural units are called the higher-order 
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nonlinear neural units (HONNU), time-delay dynamic neural units (TmD-DNU), and time-delay 

higher order nonlinear neural units (TmD-DHONNU). A special neural unit called HRV-

HONNU is proposed for adaptive monitoring of changes in variability of complex time series 

with a focus on heartbeat tachograms (R-R diagrams). 
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1 Introduction 

ince the beginning of the development of artificial neurons and artificial neural 

networks (NN), the emphasis has been put on linear synaptic operation (input 

aggregating function) of a neuron while the neural somatic (output) operation has been 

considered nonlinear except for the output layer. Nonlinear synaptic operation has not attracted 

much interest in the literature and the artificial neurons, especially those with a linear synaptic 

operation, are still poor imitations of their biological counterparts. On the one hand, a 

conventional structure of an artificial neuron (linear synaptic operation) can provide us with a   

NN displaying good capability for practical solutions to typical tasks such as pattern 

classification, system identification, adaptive control, and signal prediction. On the other hand, 

and from the point of view of exact mathematical solutions (represented by one or more 

governing implicit dynamic equations), such a conventional NN still represents a black box that 

does not allow us to obtain information about useful explicit mathematical description of a 

system and prevents a user from seeking natural and simple solutions. 

 To assure that conventional neural networks (consisting of neurons with linear synaptic and 

nonlinear somatic operations) converge toward the sufficient solution of typical tasks mentioned 

above, the NN shall be composed of a corresponding optimum number of artificial neurons and 

layers (e.g., Multi-Layer Perceptron NN). The implementation of multiple conventional neural 

units minimizes the chance of finding appropriate mathematical solutions in the form of 

corresponding, meaningful, and simple mathematical equations hidden in the structure of trained 

or adapted NNs. 

Therefore, the design of artificial neural architectures that would consist of the minimal 

number of neural parameters, sustain great computational power to converge to a sufficiently 

accurate solution, and allow us to retrieve a useful mathematical structure of the system directly 

from the NN structure has been one of the motivations and guidelines during this research. 

The static and dynamic Higher-Order Nonlinear Neural Units (HONNU), whose state of the 

art and results achieved during the research at the Intelligent System Research Laboratory in 

summer 2003 follows in the next chapter, represents a movement toward a design of a more 

natural morphology of an artificial neural unit. This design is facilitated with the natural ability 

to find existing implicit mathematical solutions in the form of corresponding static or dynamic 

equation if the appropriate mathematical structure is included as a subset in its nonlinear 

aggregating operation.  In other words, these higher-order nonlinear neural units can be applied 

for static or dynamic tasks for nonlinear static as well as dynamic systems. HONNU and other 

proposed neural units can be implemented in a network or can function as stand-alone units 

undertaking the role of a generally applicable adaptive algorithm for the identification of 

nonlinear static or dynamic mathematical equations that approximate real unknown systems. The 

novel neural architectures promise to provide us with further approaches and ideas for 

investigation of nonlinear systems and development of the theory necessary to understand and 

solve engineering problems including systems displaying complex behavior. 

In summary, two major motivations for development of the nonconventional neural units can 

be seen in:  

S 
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1. increasing the computational capability of artificial neural units, and 

2. approaching the possible functional and structural resemblance to the real biological 

neurons with respect to universally applicable achievements of technical sciences 

(mathematics, control engineering, cognitive sciences, soft computing,…). 

It has become apparent that the research of evaluation of complicated nonlinear dynamic 

systems and the development of HONNU, TmD-DNU, and TmD-DHONNU shall be closely 

related issues. Naturally, the simplification of an artificial neural network architecture would 

result in a simpler acquisition of knowledge stored in a minimum number of neural parameters 

resulting in the appropriate and the simplest mathematical description of a problem. Such a 

simplification can help solve or simplify many current problems, especially many current 

engineering challenges regarding, complex dynamic systems, control, monitoring, 

classification...  

 

Figure 1: A conventional architecture of an artificial neural unit [adapted from: Madan M. 

Gupta: Neural Computing Systems (Introduction to Theory and Applications of Neural 

and Fuzzy-Neural Systems) [U. of S., 2000]. 

Summation

Summation
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2 State of the Current Research 

he first section in this chapter highlights the achievements and important aspects of 

common nonlinear methods for evaluation of chaotic systems with a focus on heart 

rate variability (HRV). The section also looks at conventional artificial neural 

networks and addresses the issue of deterministic-chaos component in heart rate variability and 

the multi-attractor nature of HRV.  

The second section (2.2) discusses aspects of the relevant and best known conventional 

artificial neural architectures as they have been used for handling complex static or dynamic 

systems. Further, the state of development of nonconventional neural architectures up to the 

spring of 2003 is sketched [50] to [53].  

2.1 IMPORTANT ASPECTS OF 
HEART RATE VARIABILITY EVALUATION 

BY NONLINEAR METHODS AND NEURAL NETWORKS  

The first subsection in this section introduces the achievements of nonlinear methods in 

evaluating chaotic systems and HRV. The second subsection discusses the utilization of neural 

networks for evaluation of chaotic systems and heart rate variability and thus introduces the 

challenge of the novel evaluation of chaotic systems and multi-attractor dynamics of HRV that is 

answered by the proposed methodology in this thesis.  

2.1.1 Evaluation of HRV and  

Challenges Resulting from Nonlinear Methods  

Characteristic invariants of nonlinear systems have attracted great attention in literature since 

the 1980’s, as in [3] to [5], and have been investigated widely and applied to the evaluation of 

HRV with a focus on medical diagnosis [6] to [14]. Today’s commonly known nonlinear 

methods (correlation dimension (CD), largest Lypaunov exponents (LLE), and others) have been 

summarized especially in [26], which focuses on their applicability to the evaluation of heart rate 

variability. The clinical advantages of the application of nonlinear methods to HRV, such as the 

increased accuracy of classification of pathological signals, have been summarized in [14] and 

are also cited and further elaborated in [26]. On the contrary, the common nonlinear methods 

suffer from seemingly quite complicated dynamic nature of the data, e.g., R-R diagrams (the 

interbeat time series). The general properties expected from signals allowing the correlation 

dimension (CD) to be reliably evaluated [3] include:  

1. the signal is not too complicated (not too high of an embedding dimension), 

2. the signal is sufficiently self-returning (cycle-like behavior), 

3. the signal is long enough, and 

4. the signal has appropriately low noise to signal ratio. 

Even though the above mentioned conditions are originally expressed for CD, other common 

nonlinear methods, such as LLE, also suffer when the above conditions are exceeded. 

T 
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Considering the fact that physiological signals (including signals generated by the human 

cardiovascular system of healthy subjects and sometimes even the strictly deterministic ones 

[23]) often break especially the top three aforementioned conditions to some considerable 

extend. The results on heart rate variability evaluation by nonlinear methods suffer from a 

considerable degree of uncertainty and may lead to non-uniform results and conclusions ([6] to 

[14]), even though their advantages over the time-based and frequency-based methods are 

evident. The above mentioned conditions should be viewed as related merely to a particular 

evaluated signal generated by the system (rather than to the system as a whole) which possibly 

alters between chaotic modes [14] [26] as opposed to always running in chaotic mode (section 

3.2, [19] to [23]).  

The possible existence of multiple strange attractors in HRV has already been indicated in 

[14]. The idea of the multi-attractor behavior of HRV was supported by research and simulation 

experiments in [26]. This research ([14] [26]) points out the ineffectiveness of common 

nonlinear methods for evaluation of HRV because they have to be applied to sufficiently long 

time-series of R-R interbeat recordings of relatively simple dynamics, but the dynamics 

(attractor) may change significantly within the evaluated signal. Moreover, the evaluations of 

correlation dimension have failed even for apparently single-attractor highly chaotic signals 

generated by models [18] to [20] and by those in section 3.2, where parameters of the model 

were kept constant during simulation. 

Further, modeling of the behavior of the cardiovascular system that becomes complex due to 

fast beat-by-beat controlling influences of the autonomous nervous system (ANS) has been 

investigated within the frame of cooperation of U12110.3 CVUT FS and 1st Faculty of Medicine 

of Charles University in Prague [18] [20]. Established by work [18] to [23], the ability of ANS to 

develop complicated (chaotic) heartbeat dynamics by settings a very few physiological 

parameters in the “control loop of ANS” has been revealed. It was found throughout 

physiological analysis and simulation experiments that deterministic chaos in HRV can develop 

due to the time-delayed fast beat-by-beat control influences of ANS and can be significant even 

if these delays are kept constant [18] to [23]. The development of deterministic chaos in time-

delay systems conforms to common observations made in technical systems or in differential 

equations that are much simpler than the human cardiovascular system (e.g., Mackey-Glass 

delay differential equation). Moreover, the origins of chaos in HRV due to fast ANS control 

correspond to the low HRV observed with patients after heart transplants where the neural lines 

of ANS have been cut [8] [9] .  

Interesting results were obtained by the recurrence-plot method originally introduced in [15] 

and further developed and applied to the evaluation of HRV (prediction of ventricular 

tachyarrhythmia) in [16]. The method visualizes n-dimensional-system behavior into 2-D plot 

and reveals hidden periodicity (recurrences) of the evaluated signal. It displays a two-

dimensional visualization of approaching orbits of a solution in reconstructed state space with 

embedding dimension (theoretically ED ≥2n+1 Takens [4]). According to [16], this method can 

capture attractor transitions of a system (also corresponding to ‘laminar states’ in [16]) where 

common nonlinear methods may not provide reliable results as mentioned above.  

Common nonlinear methods (CD, LLE) may become ambiguous for systems with varying 

dynamics due either to varying system parameters or to deterministic transients on multiple 

chaotic attractors. Conversely, the recurrence plot handles multi-attractor behavior to some 
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extent, but the method has to work in a ‘sliding-window’ regime and always has to wait for 

relatively considerable amount of new samples that will make significant changes in recurrence 

plot in order to indicate change in the dynamics (change in the attractor) of a system. The, 

recurrence plot cannot always display the changes in dynamics clearly. An example of the 

sudden change of bifurcation diagram of the well-known logistic equation is shown below. The 

left-hand side recurrence plot displays the change in dynamics when the bifurcation parameter a 

changes from 3.8 to 4, while the right hand side recurrence plot does not clearly indicate the 

change of a from 3.95 to 3.96. 

Figure 2: The recurrence plot of time series generated by logistic equation; the recurrence plots 

do not clearly indicate the change of the bifurcation parameter a from 3.95 to 3.96  (see 

Figure 69, p.98). 

Both of the above aftermaths (of common nonlinear methods and recurrence plot) establish a 

challenge that is answered in this thesis by both the proposed nonconventional neural units 

(chapter 4) and by the proposed methodology using these neural units (chapters 5 and 6) for 

monitoring the actual changes in heart rate variability. 

2.1.2 HRV and Artificial Neural Networks  

As previously mentioned, the utilization of NN for prediction of chaotic signals with a focus 

on the analysis of cardio-signals has been elaborated on in [27] (Mankova 1997) and further 

elaborated in [26] (Vitkaj 2001). The analytical and practical observations resulting from the 

development of feed-forward neural-network (FFNN) models, and their application to chaotic 

signals and R-R diagrams prediction (interbeat tachograms) in [26], introduce important facts 

that conform to original ideas leading to this proposed thesis. Loosely translated and with 

comments, a summary of relevant conclusions from [26] follows: 

1. “Small” FFNN (~4/6/1) seemed to extract the characteristic orbit of the system or the 

characteristic transition between orbits ([26], p.59). The FFNN with a smaller number of 
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neurons can learn the chaotic behavior starting from particular initial conditions and can 

capture the transition to another (coexisting) attractor. 

2. “Large” FFNN (16/24/1) generated signals with a frequency spectrum more similar to that 

of the original signal. A FFNN with a higher number of neurons tends to learn the 

dynamics of the system as a whole. 

3. Low-dimensional chaotic systems with appropriately “returnable orbits” can be very 

accurately predicted by simple neural models ([26], p.62). A simple FFNN can very 

accurately predict systems behaving apparently on a single attractor. 

4. A predicting NN model does not have to characterize the modeled process as a whole; the 

extracted characteristic can be used for the modeling and classification of chaotic systems 

([26], p.71). Even though the trained NN describes only the actual dynamics of a system for 

the orbit (attractor) on which the system at that time behaves, it can be used for modeling 

and classification of chaotic signals. 

5. NN can extract an attractor’s geometrical characteristics from noisy data and from a low 

number of input data ([26], p.79); this NN property may improve in the case of incremental 

adaptation of NN if artefacts or noise were present in the minority of data samples. For 

example, if 10% of samples were due to unwanted artefacts or were affected by noise, then 

90% of weight increments accurately approache the system dynamics while only 10% 

diverges neural weights away. Given 1. and 3. above, it is a technical task to suppress the 

weight-convergence-distorting data sample (presumably an artefact or a noisy sample) by a 

simple modification of the general adaptation learning rule; that is, the distorted samples 

can be detected in a signal in this way. Extracting an attractor’s geometrical characteristics 

from noisy data may become more problematic in case of common batch training 

techniques used in [26] (e.g., Widrow-Hoff or Levenberg-Marquardt [29]), where all data 

samples (including the artefacts and noise-distorted samples) may be considered equally 

significant to the system dynamics. 

6. NN can be applied successfully in cases where ECG recordings are not long enough for 

common nonlinear methods due to their insufficient convergence or instability ([26], 

p.104).  

7. Pathological changes within a critical group of patients can be detected by generating the 

residua resulting from the comparison of a NN model of the patient and the patients actual 

physiological recordings. ([26], p.104). 

8. The design of a NN model of a patient will not be easy because of the complexity and multi-

attractor behavior. ([26], p.104). 

9. NN models should be utilized also for decomposition of multi-attractor dynamics. Due to 

multi-attractor dynamics, the common nonlinear methods are incorrect over the whole 

length of the recorded signal, they do not converge, or they result in a significant variance 

of results, preventing precise and detailed medical diagnoses. ([26], p.104). 



 

13 

2.2  ARTIFICIAL NEURAL ARCHITECTURES AND COMPLEX 

SYSTEMS 

2.2.1 Conventional Artificial Neurons with Linear Synaptic Operation 

Common architectures of Neural NN (MLP, RBF, Hopfield networks) consisting of 

conventional artificial neurons (with linear synaptic operation - or the aggregating function) 

(Figure 1) have provided researchers with NNs displaying the ability to perform typical tasks 

such as pattern classification, system identification, adaptive control, and signal prediction.  

Unfortunately, from the point of view of exact mathematical solutions (represented by one 

or more governing implicit static or dynamic equations), conventional NN still represent a black 

or gray box that does not allow a user to obtain information about useful explicit mathematical 

description of the problem. The black box effect prevents researchers from revealing natural and 

simple solutions derived from further mathematical analysis of simple equations describing a 

complex problem. 

When complex systems, such us nonlinear ones, are to be identified (or rather approximated), 

the implementation of multiple conventional artificial neurons with nonlinear output function 

minimizes the chance of finding appropriate mathematical solutions in the form of 

corresponding, meaningful and simple governing equations hidden in the structure of trained or 

adapted NNs (Figure 3). To retrieve a useful governing equations of a system that are hidden in a 

trained conventional neural network is usually difficult when the equations are required for 

further use, such as for further mathematical analysis of a simple nonlinear differential equation 

that would still accurately describe a system.  

For example, in a typical case of 3-layer single-output FFNN architecture as in Figure 3, the 

internal mapping function that would be the basis for a governing equation of an approximated 

system has the structure shown in Eq.(2-1): 

 
1

2 2 1

1 1

1 3 3 3 2 3 3 2 2 1 1( , , , ) ( )( )( ) ( )
m m m

j j

i i j
i i i i ij jout f w u w w w uy φ φ φ φ

= = =

= = =∑ ∑ ∑2w W w u , (2-1) 

where ju is jth neural input to a network, 
ikφ is nonlinear output function (somatic operation) 

of the ith neuron in kth
 layer, wkij is neural synaptic weight of ith neuron in kth layer from jth

 
neuron 

from previous k-1
th layer, k i

x is output from ith neuron in kth layer, mk is the number of neurons in 

k
th network layer.  

   Naturally, the number of neurons and hidden layers correlates to the complexity of observed 

behavior of an approximated system.  The more complicated a system behavior, the more it is to 

be investigated (identified, controlled, classified…) to a certain degree of considered autonomy, 

the higher level of nonlinearity may be expected in the dynamics of the system. Therefore, the 

applied conventional FFNN should be equipped with appropriate nonlinear capabilities in its 

input-output mapping function (the more robust the NN, the more “degrees of freedom” of the 

NN in the state space). This is often achieved only by adding neurons or even layers into a 

network in the case of conventional NN architectures (i.e. with neurons with linear synaptic 

[input] and nonlinear somatic [output] operations) (Figure 1). 
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Figure 3: Example of a conventional feed-forward three-layer multiple-input and single-output 

neural network. 

A generalized form of input-output mapping function of such FFNN is then shown in Eq.(2-2)  

 

1

1 2 2 1

1 1 2 2 2 1 1 1

( , )

( )( )

( )

( )( ),

m

n n n

j

m m m m

n n n n n

j i j i

n

j j

n n

j j ji j j ij j i i

out f w u

w w w w u

y φ

φ φ φ φ φ− − −
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where n is the number of network layers including the input layer, wi or Wi are weight vectors 

or weight matrices representing synaptic connections into neurons of ith layer, and other symbols 

are similar to Eq.(2-1).  
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Figure 4: A simplified sketch of a biological neuron assuming nonlinearity in neural synapses 

(from Gupta, 2003) compared to a conventional artificial dynamic neural unit with 

linear aggregation (summation) of neural inputs and neural state feedback (Hopfield, 

Pineda 1980). 

2.2.2 The Onsets of Nonconventional Artificial Neural Units 

The need for an increase in the computational power of individual artificial neurons was first 

introduced by A.G. Ivakhnenko (in the late 1960s) in the polynomial neural networks (PNN), 

where Kolmogorov-Gabor polynomials were utilized in the aggregating function of neurons 

[30]. Since then, the PNNs have been further developed and have become a branch of neural 

network research. [33]. 

In this thesis, the research concept of artificial neural networks (ANN) outlined by Hopfield 

and later by Pineda [30] [31] is the primary focus. It has been further pursued and developed by 

the research group of Prof. M.M. Gupta (ISRL, U. of S., Canada) [49] which is linked to 

research group of Prof. J. Bila (FS CVUT, CR), e.g. [24] to [26] and [28].  Some readers, 

however, can consider this proposed work to be inspired by the both of the above introduced 

approaches to research of ANN. 

 There is a very important point that should be mentioned and that is considered to be the 

natural synthesis of the two (as well as others) approaches to the artificial neural networks 
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mentioned above. The Wikipedia web page on a biological neuron, in a section titled 

“Challenges to the neuron doctrine”, states: 

„The neuron doctrine is a central tenet of modern neuroscience, but recent studies 

suggest that this doctrine needs to be revised... 

....., dendrites, like axons, also have voltage-gated ion channels and can generate 

electrical potentials that carry information to and from the soma. This challenges the view 

that dendrites are simply passive recipients of information and axons the sole 

transmitters. It also suggests that the neuron is not simply active as a single element, but 

that complex computations can occur within a single neuron...“ 

(http://en.wikipedia.org/wiki/Neuron#Challenges_to_the_neuron_doctrine , 22/11/2006) 

As mentioned above, another signs of equipping artificial neural units with greater 

computational power and with the utilization of backpropagation gradient learning algorithm 

([29][35][36][48]) was recently published in literature (Wiley & Sons) by Gupta, Liang, Homma 

in 2003 [49], where one can find the first signs and rudimentary concepts of Higher Order Neural 

Units.  This work, we will be based on the terminology used by M.M. Gupta in his book on 

neural networks [49].  In the spring of 2003 (when the author joined the research group of Prof. 

Gupta), the concept of the nonconventional artificial architectures was briefly introduced in its 

basic principle, and static (Figure 5) and simple dynamic modifications were being developed 

(Gupta, Song, Redlapalli, Bukovsky, [50] to [52]). 

 
Figure 5 : Static quadratic neural unit (xa=[x0,x1,…,xn]

T
=[u0,u1,…,un]
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3 Approaches and Applied Methods 

he research and methodologies presented in this work will be sketched in sections 3.1, 

3.2, and 3.3. The notion of deterministic chaos in dynamic systems is introduced in 

section 3.1. In section 3.2, some of our achievements (up to 2003) in research of heart 

rate variability in the human cardiovascular system will be introduced and synthesized with the 

basic theory of deterministic chaos in dynamic systems. In section 3.3, the widely applicable 

mathematical concepts that are successful in technological applications (i.e. system identification 

and control) are shown to be the inspiration for a new understanding of biological neurons 

throughout mathematical terms. This merging of mathematics and biology results in the 

development of proposed higher-order nonlinear neural units, of time-delay dynamic neural 

units, and of time-delay dynamic higher-order nonlinear neural units.  

The basis of the new method of evaluation of complex systems applicable to cardiovascular 

dynamics will be introduced in sections 3.1, 3.2 and 3.3 in this chapter. Section 3.2 is 

significantly based on the author’s former research work ([19] to [23]) that precedes the 

development of the new artificial neural architectures proposed in this work.      

3.1 INTRODUCTION TO 

THE APPROACH TO NONLINEAR DYNAMIC SYSTEMS 

This section introduces nonlinear dynamic systems which, by their structure, correspond to 

the design of the proposed neural architectures, HONNU. The principles of developing chaotic 

behavior in these systems are discussed in subsection 3.1.2 as HONNU display the ability to 

approximate the dynamics of complex systems. The approaches to evaluating the stability of 

these systems are introduced in subsection 3.1.3; however, the need for analytical evaluation of 

the proposed dynamic HONNU has not become the matter of interest because the stability 

problems during adaptation of dynamic HONNU are avoided by combining static and dynamic 

implementations of the proposed neural units (section 5). 

3.1.1 Nonlinear Dynamic Systems 

To introduce the concept of deterministic chaos, the notion of determinism of a system should 

be approached first. As an aside, the notion of determinism also implies no random inputs, no 

random variables, and no random external or internal perturbations into a system.  We can begin 

by recalling the uniqueness of solution of set of differential equations (Eq.(3-1)) in region 
n∈U �  in the state space which is assured by its differentiability or, at least, by the Lipschitz 

property in U (see the Lipschitz condition below). 
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 The x is the state vector, f is the set of nonlinear functions, Wf can be a multidimensional matrix 

or a vector of system parameters (see subsection 4.1.2 for details). The Lipschitz property (the 

smoothnes) of  function f also represents the condition for the solution uniqueness of system 

Eq.(3-1). By definition, the set of functions f is Lipschitz on an open set U in n
R  if there exists a 

Lipschitz constant L such that 

 n
( ( )) , , ,L R− ≤ − ∀ ∈ ∈1 2 1 2 1 2f x f x x x x x U  (3-2) 

which is in fact the condition of all first partial derivatives of  f  being bounded on U 

 
( )

., 1, 2, ,
i

const i n
x

∀ ∈

∂
≤ =

∂
x U

f x
…  (3-3) 

The uniqueness of a solution of system Eq.(3-1) on nR∈U  determines the flow F of this 

system in U for all initial conditions in U. In brief, the flow F of the system can be understood 

simply as a system solution 0( ),t=F F x  or 0( ),t=x x x , which is also called an orbit or trajectory 

of a solution that is a function of time t starting from initial conditions 0x  in a state space. 

So far, the notion of determinism of a dynamic system given in Eq.(3-1) has been simply 

introduced by the uniqueness of solution which corresponds to a single orbit of the system 

(solution ( ),t 0x x ) starting from initial conditions 0 ∈x U  located on that orbit. 

Once the determinism has been introduced, the features and the origins of deterministic chaos 

can be introduced by defining a few more common terms used to describe the behavior of 

nonlinear dynamic systems. 

The eigenvalues of a linear system determine the type of stability as one of the following: 

1. stable, meaning that the solution (orbit) 0( ),tx x  finally arrives to an equilibrium point, 

2. unstable, meaning that the solution (orbit) 0( ),tx x  departs, optionally with oscillations, to 

ideally infinite distance from the equilibrium point, 

3. at the edge of stability, meaning that the nonequilibrium solutions (orbit) 0( ),tx x , where 0x  

is not an equilibrium point, is periodically oscillating when at least one eigenvalue of a 

linear system is complex conjugate number with its real part equal to zero. 

System behavior becomes different and complicated with nonlinear systems where an orbit 

can be stable in the sense that it does not leave some region in state space, but it is not 

periodically oscillating.  Systems that behave this way may be referred to simultaneously as 

Lyapunov stable (for a particular region of initial conditions) and chaotic (unless they are 

quasiperiodic).  

In order to describe and explain features of this phenomenon referred to as deterministic 

chaos, more terms such as limit cycle, limit set, chaotic orbit, chaotic set, chaotic attractor, 

transient chaos, basic types of bifurcations, cascades, manifolds, crisis, and coexisting attractors  

(multi-attractor behavior) will be briefly introduced below. 

There are two kinds of limit sets to be defined: 

1. ω-limit sets, further denoted as ( )ω , which are forward limits sets of an orbit of a solution 

0( ),tx x . A point z is in ω-limit set of system in Eq.(3-1) if the following limit equation 

holds: 
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 0 0( ) ( , )( ) ( ), lim ( , )
t

tz t zω ω
→∞

∀ ∈ = =F x x x x x , (3-4) 

2. α-limit sets, further denoted as ( )α ,  which are backward limit sets of an orbit of a 

solution 0( ),tx x . A point a is in -limitα  set if following limit equation holds: 

 0 0( ) ( , )(F ) ( ), lim ( , )
t

ta t aα α
→−∞

∀ ∈ = =x x x x x . (3-5) 

A limit set, whose definitions are meaningful in association with discrete time domains 

(systems described by time-t maps Eq.(3-10), p.22) is sometimes also referred to as a “limit 

cycle”, that better fit the definition of a continuous time domain, especially one with linear 

systems. However, these two terms are not equal in meaning because chaos has a chaotic limit 

set that is not a cycle. An orbit has been briefly defined as a forward (as well as backward) 

trajectory of a solution 0( ),tx x  of an autonomous system Eq.(3-1) in state space, so the chaotic 

orbit of a flow can be briefly defined as an orbit 0( ),tx x  that satisfies following conditions:  

1. 0( ),tx x  is bounded, 

2. At least one of the Largest Lyapunov Exponents of  0( ),tx x  is positive (for LLE see 

chapter on evaluation of chaotic signals), 

3. Forward orbit 0( ),tx x  is not periodic and does not consist only of equilibria or the 

equilibria with connection arcs (the ω -limit sets does not return to itself), and 

4. A point cax  (ca … for connecting arcs) of an orbit 0( ), cat =x x x  either is on a 

connecting arc or 0( ), cat =x x x  is a connecting arc if both forward limit set ( )caω x  and 

backward limit set ( )caα x  of this orbit consist only solely of equilibria, or 

0( ), cat =x x x  is a connecting arc if it starts and ends in equilibria. 

It is important to distinguish between chaotic and quasi-periodic orbits of a solution. While a 

chaotic orbit was defined a few lines ago and excludes the periodicity of a system in its n-

dimensional state space, some particular systems in n
�  for 3n ≥  may produce an orbit whose 

frequency spectrum consists of incommensurate natural frequencies of a system, and whose orbit 

never returns to itself (including some nonautonomous systems in 2
�  that can be transformed 

into 3
� , allowing a solution to wind around an irrational 3-D torus). If such a solution winds 

indefinitely on an irrational torus never returning to itself (the orbit is dense on such a torus) and 

if the orbit has positive LLE, this orbit is called quasiperiodic, not chaotic. Especially for 

systems given by two NDEs, i.e. a continuous dynamic system in 2
� , chaotic behavior of a 

system cannot be achieved. Only quasi-periodical behavior may be achieved under special 

conditions in accordance with the Poincaré-Bendixon theorem ([1], p.337). In other words, a 

solution of a system in 2
�  (given by two NDEs as in Eq.(3-1)) travels on a curve in the plane. 

As the Jordan curve theorem states, every closed curve in 2
�  creates two separate regions and 

such a curve must be crossed in order to move between those two regions. Then, the uniqueness 

of the solution of a given system ensures that the solution in this case may be either diverging 

(unstable), converging to an equilibrium point (stable) or the limit cycle, but not chaotic or 

quasiperiodic in that sense. However, for previously mentioned nonautonomous but planar 

quasiperiodic systems that can draw an irrational torus with dense orbit in 3
�  due to existing 

incommensurate natural frequencies of a system, there is no analogy of the Poincaré-Bendixon 

theorem and a torus for no closed curve can be divided into two parts. Therefore, only 

quasiperiodic behavior can develop in continuous time systems in 2
� . 
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 Once a chaotic orbit has been defined, we can advance to a chaotic set and then to a chaotic 

attractor. 

A chaotic limit set is a forward limit set 0( )ω x  of a chaotic orbit 0( ),tx x . In principal, the 

points of a chaotic orbit with chaotic forward limit set may also be included in the chaotic limit 

set. If a nonlinear dynamic system with a chaotic limit set 0( )ω x  is started from various initial 

conditions considered apart from its chaotic limit set 0 0( )ω≠x x , and if the orbits on these initial 

conditions finally arrive at the 0( )ω x , then the chaotic limit set  0( )ω x   is the chaotic attractor of 

the system, and the region of the initial conditions which arrives at 0( )ω x  is a basin of attraction 

of this attractor. 

It should be emphasized that a chaotic limit set shall not be called a chaotic limit cycle 

because a chaotic orbit never returns to itself and the terms cannot be used interchangeably. 

Another important type of chaotic behavior in nonlinear dynamics systems is the transient 

chaos when an orbit of a solution is passing through a chaotic region up to some specific time 

after which the solutions suddenly quits its chaotic regime for the same parameters and inputs to 

a system. For example, transient chaos can be found in the Lorenz’s equations [1]. Until now, 

chaotic behavior has been described with a focus on autonomous continuous-time dynamic 

systems.  

  However, the second (and very important) mechanism of development of chaotic behavior in 

nonlinear dynamic systems can be found in nonautonomous systems such as 
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   (3-6)  

or 

 ( ) ( 1)( , , , , , , ) 0,n n
ff x x x x u− ′ =w…  (3-7) 

where 1 2, , , , nu u u u…  are periodic input functions where at least one is periodic while the 

remaining are zero or constant. 

Thus Eq.(3-6) or Eq.(3-7) form a common family of forced oscillators in which quasiperiodic 

or chaotic behavior may develop if a system is of second or higher order of dynamics, 

respectively. A well-known example of a forced oscillator with quasiperiodic behavior is the 

Duffing equation [1]. In short, there are two ways of development of chaos in forced oscillators, 

both corresponding to the previously mentioned concepts. According to a physical interpretation, 

a dissipative system loses its energy along its orbit, thus it is attempting to arrive at some of its 

energy minima. However, due to periodically forced input or inputs into a system, the solution 

does not settle down to an equilibrium point or limit cycle and may orbit among various 

equilibria of various types in a state space. According to a particular nonlinearity of a system 

itself as in Eq.(3-6) or Eq.(3-7), its behavior corresponds to a complicated vector (slope) field 

(Figure 6-b, Figure 7) in the state space where the solution flows, and complicated and even 

chaotic behavior of a system may develop. 
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 Another way of looking at nonautonomous systems as in Eq.(3-6) and Eq.(3-7) is as a 

transformation into a system with constant unit input by declaring time as an additional state 

variable,  

 1 1 1( ) ( ), 1n n ntt x x x+ + +← = ⇒ ←u u� ,  (3-8) 

which is useful mainly for two- dimensional systems in demonstrating principles of quasi-

periodic behavior on an irrational torus [1].  

Such a nonautonomous system in n-dimensional state space with forcing input given by 

function vector ( )tu  then yields a n+1-dimensional nonautonomous system with a single 

constant input function ( ) 1t =u , which is 
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 (3-9) 

Up to this point, some of most important terms were defined and various types of behavior of 

nonlinear (real) dynamic systems have been discussed with a focus on introducing the 

complicated behavior of real-world systems known as “deterministic chaos”. 

3.1.2 Basic Principles of Development of  

Chaotic Behavior in Nonlinear Dynamic Systems 

In this chapter, common mechanisms of development of chaotic behavior in deterministic 

systems, such as Eq.(3-1) will be discussed. These mechanisms, which are basically bifurcations, 

bifurcation cascades, and the related crisis, will be discussed as they can occur in a simple or 

only a one-parameter class of autonomous systems whose parameter varies in real time. 

As mentioned previously, the chaotic nature of a deterministic system corresponds to the 

complex morphology of the vector field (slope field), the dislocation of system equilibria, and 

the variety of their types in the state space wherein a system performs. All these properties of a 

system are due to various types of nonlinearities presented in a system
4
. When the behavior of 

such a system in the state space is ruled by either governing differential equations (continuous 

flow in the state space) or discrete functions mapping the subsequent states of a system along 

orbits of solutions (so called time-T maps), the actual configuration of parameters of these 

equations together with initial conditions of a system and system inputs determine system 

behavior. Changes in these parameters may trigger chaos. In other words, these changes can 

result in the sudden appearance or disappearance of a chaotic attractor, can cause hysteresis in 

transitions between various types of behavior including chaos, and can cause other complex 

phenomena which cannot appear with linear systems (see footnote 4). 

                                                
4
 Time-delay systems are not included in this introductory part because the final application to heart rate variability 

in this thesis has not used adaptable time delays for monitoring the dynamics yet; it is subject of further research. 
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This work concerns continuous-time and discrete-time neural architectures, and an 

introduction to basic chaos triggering mechanisms via discrete governing equations follows in 

this subsection. 

The time-T map in Eq.(3-10) may represents a discrete analogy to the system in Eq.(3-1), 

where the continuous-time variable of time t becomes the fixed time difference .t k T← . 

 1( , )k k −= gx x Wg  (3-10) 

The family of maps g( ) that represent diffeomorphism or at least homomorphism are 

considered in this subsection to introduce chaos triggering mechanisms. Certainly, these maps do 

not have to necessarily represent the discrete-time alternative to continuous systems with fixed 

period T. If the period T is not to be fixed, then the map g( ) can represent the governing equation 

of system behavior on, e.g., Poincaré section. Another case is the map of discrete time series 

such as R-R diagrams where data are sampled every R peak occurs in ECG signal (section 5). 

As previously noted, mechanisms developing chaotic behavior in dynamic systems can be 

well approached through discrete time-T map system description Eq.(3-10). The mechanisms, 

also called “generic bifurcations”, are the period doubling bifurcation and the saddle-node 

bifurcation, which are the most common chaos triggering principles. Other cases, such as the 

pitchfork bifurcation, are considered to be less common (Table 1, [1]). 

 In general, a bifurcation occurs when some particular parameter of a nonlinear dynamic 

system is varied and appears as a sudden change in qualitative system behavior related to a 

change in appearance or a shift in the number, type, or in both number and type of equilibrium 

points in a state space. 

For example, a saddle-node bifurcation in time-T maps is the appearance of a new pair of 

fixed points in a region in the state space when a parameter of a system has been varied and no 

fixed points had existed previously in that location. For time-T maps in the one-dimensional state 

space, the bifurcation is called the tangent bifurcation. The term “equilibrium point”, here 

denoted as  ex , is used normally for continuous-time systems in Eq.(3-1) as follows 

 ( ) ( ),( ) 0t t= = ⇒′ =f quillibriumW ex f x x x , (3-11) 

while the term “fixed point” refers to the equilibrium point of equation Eq.(3-10) that may be the 

time-T map of the same system as in Eq.(3-1) and may be its equilibrium point unless periodic 

solution with period T occurs. 

 1 1( , ) .k k k− −= = ⇒ =g ixedfx g x W x x x ,  (3-12) 

The Eq.(3-1) and Eq.(3-10) may be two different representations describing behavior of the 

same dynamic system in its state space, where Eq.(3-1) stands for continuous-time representation 

and Eq.(3-10) “samples” the continuous-solution trajectory in intervals of length T.  While an 

equilibrium point in the case of a continuous-time system (Eq.(3-1)) is strictly given and clearly 

defines the steady state of a system in its state space, a single existing fixed point of a time-T 

map is to be viewed as a point on possible periodic orbit with period T.  

 f f 1( ) ( ) ( ), , k k f fTt t +⇔ = = =+= x x x xgx x x x  (3-13) 
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Obviously, the map would display multiple points on Poincaré section that would result from 

intersections between the Poincaré section and the orbit of a solution as the orbit, starting from 

initial conditions x0 , would travel in a state space toward the attractor, which is a periodic ω-

limit set with period T in such case. Later in the thesis, a possible way to find the time-T map 

that would be the discrete-time alternative to continuous-time dynamic system will be proposed 

using discrete static as well as dynamic neural architectures (HONNU), which belong among 

systems as in Eq.(3-10). 
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The time difference T in the above considered time-T maps is not limited in length as in the 

case of common discrete approximations of continuous systems nor is the sampling period T 

necessarily constant (Poincaré sections, R-R diagrams), thus it is distinguished from these 

common discrete approximations of continuous systems. 

Further, the general parallel between a system described by Eq.(3-1) and its discrete-time 

alternative time-T map described by Eq.(3-10) will be discussed with a focus on the principles of 

deterministic chaos.  

A periodic continuous-time orbit  x(t,x0,Wf) of system Eq.(3-1) with period T or its by-integer 

multiples . , where 1,2,3,...pT i T i= = , has to be viewed as an underlying structure of a fixed 

point in time-T map representation Eq.(3-1) of the same dynamic system. Thus, the saddle-node 

bifurcation can be viewed as the appearance of a new pair of fixed points within systems given 

by time-T maps. In parallel with that, the creation of two fixed points can represent the 

establishment of two new continuous-time periodic orbits of the system where there had been a 

single equilibrium (sink) point before. When a new pair of fixed point appears with a saddle-

node bifurcation of time-T maps, these two points move on emanating branches as a bifurcation 

parameter of a system (some particular parameter in matrix Wg, and thus parallelly in Wf) is 

further varied. In particular, this property of moving fixed points on branches emanating from a 

former single fixed point is referred to as the concept of fixed point  continuability (generally 

applicable to some neighborhood of a fixed point). It is typical for a saddle-node bifurcation after 

passing the bifurcation value where the type of one of the emerging fixed points is a saddle (or 

repeller in one-dimensional systems) and the second one is an attractor. 

In the case of period doubling bifurcation, each existing fixed point of a system splits into two 

more fixed points as the particular one or possibly more parameters of a system (those in Wg and 

parallelly in fW ) are varied over next bifurcation value. 

Unlike a saddle-node bifurcation, the period doubling bifurcation appears where some fixed 

point had already existed. In most generic cases, when the existing fixed points bifurcate, they 

switch their stability, i.e. the attractor sinks become repellers (sources) and the unstable fixed 

points become attractors. In the bifurcation diagram, two new branches of fixed points emanate 

from an actual periodic point of period k, called period-k fixed point, and thus period-2k fixed 

point creates and moves in the diagram as some bifurcation parameter or parameters of a system 

are varied. Even though the principles describing the two generic bifurcations, i.e., the period 
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doubling and saddle-node bifurcation, can be found in classes of one, two, and possibly more 

dimensional time-T maps, they should still be considered basic examples introducing notions of 

the development of chaotic behavior in deterministic dynamic systems. Because the stability 

types of fixed points are simpler in the case of one-dimensional time-T maps (either an attractor 

or source (repeller)), the development of chaotic behavior through bifurcations can be grasped 

clearly.  

 The third and quite common case of bifurcation is the pitchfork bifurcation, which occurs in 

systems under special conditions, for which it is referred to as non generic bifurcation. This 

bifurcation can be explained again using the concept of one-dimensional maps. A specific 

condition placed upon a system to undergo a pitchfork bifurcation can be the symmetry of a map 

Eq.(3-1) describing the system. 

 ( , ) ( , )k kg g= −g g-x w x w , (3-15) 

where gw  is a vector of system parameters. 

When a particular parameter of a system is varied over a bifurcation value, thus evoking the 

pitchfork bifurcation, then an existing branch of a continuous path of an unstable fixed point 

continues further as a path of stable fixed point, and two new branches emanate from the 

bifurcation point. 

The changes in the fixed point properties, which indicate the generic and pitchfork 

bifurcations, can be summarized in Table 1, where wgibifur is a bifurcation parameter at the 

bifurcation value and xfixed is the fixed point. 
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saddle node 1 ≠ 0 ≠ 0 

pitchfork, transcritical 1 0 ≠ 0 

period doubling -1 ≠ 0 ≠ 0 

Table 1: Fixed-point conditions for common bifurcations of 1-D maps, copied and modified 

from Ref. [1] p. 467 

Suppose, for some particular region in a state space in n
� , that a time-T map 

1( , )k k −= gx g x W  represents a discrete analogy (not an approximation) to a continuous-time 

description of a system (flow) 

 1( ) ( ), , ( , )k kt t −= ⇒ =0 f gsx x x W x g x W , (3-16)  

where .t T k←  and Wfs consists of parameters of the solution that are presumably functions of 

continuous-time system parameters Wf as in Eq.(3-1), that is ( ) ( ),( )t t=′
fWx f x . 

Then, let us simply draw parallels between previously introduced bifurcations in discrete-

time-T maps and bifurcations in (continuous-time) NDEs in order to introduce basic chaos 

triggering mechanisms in NDEs, as in Eq.(3-1).  

Suppose that there exists a deterministic nonlinear system capable of displaying distinctly 

complicated types of behavior, including a chaotic one. Moreover, suppose bifurcations are the 
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chaos triggering mechanism there. Suppose that there exist two equivalent sets of governing 

equations that accurately approximate the system behavior in a particular region in n
�  for n ≥ 3. 

The first set of governing equation describes a system in discrete-time domain, i.e. time-T 

maps as in Eq.(3-1) 

 1( , )k k −= gx g x W . 

The second one describes the system in continuous-time domain, i.e. by NDEs as in Eq.(3-10) 

 ( ) ( ),( )t t=′
fWx f x . 

What are the parallels to the corresponding continuous flow )( ,t 0x x  of the solution of NDEs’ 

if the previously described bifurcations appear in the time-T map of such a system? 

A single fixed point of the time-T map can also be associated with a single periodic orbit of 

period T of a continuous flow Eq.(3-10). One can simply think of the most basic instance of a 

saddle-node bifurcation in NDEs as a splitting of the existing equilibrium point and the 

appearance of a new periodic orbit, of period T. The new orbit further develops in a state space 

simultaneously with the further variation of a bifurcation parameter (or parameters), while its 

time period T is sustained (as results from simulated or experimentally-obtained bifurcation 

diagrams). 

As the saddle-node bifurcation parameter is further varied, the new saddle-node periodic orbit 

appears and then splits out to one stable (attractor) and one unstable (source, repeller) orbit [1]. 

These two orbits may depart from each other as the parameter is varied (note the distance 

between branches of the fixed point and the periodic continuous orbits in the bifurcation 

diagram).  

A brief note should be made about an obvious, yet important point. The common paradigms 

known from the domain of linear systems barely apply to nonlinear dynamic systems. For 

example, when a parameter of a linear system is varied, it influences the stability and oscillations 

of the system via the roots of a system. Conversely, if a (bifurcation) parameter is varied in 

nonlinear dynamic system, the period of the system may remain constant (the same number of 

branches of fixed points in a bifurcation diagram) until another bifurcation occurs. In other 

words, the varying bifurcation parameter can modify the location of the created periodic orbits, 

i.e., the location of the attractors and sources. This dislocation modifies the distance in n
�  that 

the solution travels on the periodic orbit before returning to itself; possibly it might modify its 

shape5, but it does not prolong nor shorten the time that the continuous solution ( , )ftx x  spends 

on a stable periodic orbit (attractor) before returning to itself. This can also be seen clearly with 

the period-doubling bifurcation. Given the previous proposition, an association can be made 

between period doubling bifurcations in time-T maps and the corresponding phenomenon in the 

same system described alternatively by NDEs. The fixed points continue on their branches in the 

bifurcation diagram, as the bifurcation parameter is varied; that is, the periodic orbit may vary in 

its location, length, and possibly shape in n
� . They do not, however, change in the time length 

of the interval (integer multiples of T) that they spend on the actual attractor until the next 

                                                
5
 Bifurcation diagrams do not say anything about the length and morphology of the periodic orbits, but they specify the 

location of fixed points that are single points in the path of continuous periodic orbits with a period of integer multiple of 

T. 



 

26 

(possibly period-doubling) bifurcation occurs. While the length of the periodic orbit in n
�  state 

space varies, the relative position and distance of the fixed points in the bifurcation diagram and 

the period still remains constant (integer multiple of T), because of the continuous path of a fixed 

point in a bifurcation diagram. 

This concept can be explained by the system gaining kinetic energy on its stable orbit while 

the bifurcation parameter is varied and the attractor is prolonged in n
�  (and possibly modified 

otherwise), and the time period of the attractor remains unchanged at least according to 

bifurcation diagrams. 

Once the basic types of bifurcations were introduced as possible mechanisms triggering the 

complicated behavior of nonlinear dynamic systems described in the discrete as well as in the 

continuous-time domain, the whole process of consequent bifurcations in a system, as one or 

more bifurcation parameters of a system are varied, is called a cascade. A cascade can result in a 

mode of system behavior referred to as chaotic once a measureless number of fixed points has 

been generated through the cascade. A typical case is the well known cascade of period doubling 

bifurcations in a logistic (population) time-T map that is generally observed with the tent-shaped 

family of maps [1]. 

The previously introduced types of cascades, and their bifurcations resulting in chaos, are 

basic ones and can be found in selected families of maps and in nonlinear differential equations. 

The nonlinear system behavior at the bifurcation transitions, resulting in a variety of changes in 

the types of fixed points, smooth continuous and sudden topological changes in limit sets and 

attractors in a state space may be more complicated for more general nonlinear dynamic systems. 

Their description is difficult, especially in the case of higher dimensional systems, and is outside 

the scope of this work. While a basic cascade in a time-T map may be interpreted as a process of 

consequent bifurcations generating fixed points of various type (sinks, repellers, saddles) and 

their continuous paths (branches in a bifurcation diagram) interconnected through the bifurcation 

points, as some system bifurcation parameter is varied, it would generally represent variations in 

complexity of the slope field of the NDE describing the same system in a state space related to 

the increase of number, type changes, and locations of single equilibrium points, as well as 

creating, prolonging, and merging various limit cycles (α -limit sets) and thus prolonging the 

period of flow of solution as previously interpreted from discrete into continuous time domain 

for each particular type of bifurcation.  

While the concept of cascades can be good for introducing chaos in discrete systems 

(recurrent time T-maps) and their possibly parallel continuous-time systems (NDEs), the 

concepts of stable and unstable manifolds and the related existence of homoclinic points and 

homoclinic trajectory must be recalled, as they represent a significant condition for the 

development of deterministic chaos in dynamic systems [1] [2]. Thus, a crisis in a chaotic 

attractor should be mentioned as it represents another important principle resulting in a sudden 

change of level of chaos in a system behavior.6 Contrary to previously mentioned chaos 

triggering mechanisms, the concept of stable and unstable manifolds related to crisis in a chaotic 

attractor will be recalled as one of the most significant ones relating to chaotic developments in 

dynamic systems. 

                                                
6
 Simply, the ”level of chaos” such as measured by LLE or correlation dimension, e.g. 
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Let us begin with the saddle-node type of equilibria. In brief, a stable manifold of an 

equilibrium point is the set of all points whose ω-limit set is the equilibrium itself. Similarly, the 

unstable manifold is the set of points whose α-limit set is the particular equilibrium itself. In 

linear dynamic systems, the manifolds reduce to straight lines in the directions of the 

eigenvectors of fixed or equilibrium points (-a), while they may become complicated curves in 

nonlinear cases (Figure 6-b). In Figure 6-a, the stable and unstable manifolds of a linear system, 

Eq.(3-17), of a saddle equilibrium point are shown. In Figure 6-b, the manifolds of nonlinear 

system Eq.(3-18) of one saddle [0,0] and one elliptical [-1 0] equilibrium point are shown. The 

blue arrows indicate the orientation of slope vectors emanating from points shown either as red 

spots, denoting positive derivative of Lyapunov function (Eq.(3-23), p.31), green spots, denoting 

its negative value, and black dots, indicating equilibrium points. The stable manifold between the 

equilibria is the connecting arc. 
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As seen from the 2-D examples in Figure 6 and Figure 7, topological structures of manifolds 

of nonlinear dynamic systems become complicated, especially once dealt with higher-

dimensional systems. Lambda lemma [1] says that if some curve L crosses an unstable manifold 

of a hyperbolic fixed point transversally, then the particular orbits, containing the points of that 

curve L, follow the unstable manifold; thus, such solutions cannot be (locally) stable in this area 

of the state space.  

It is well known, that given the uniqueness of a solution and the Poincaré-Bendixon theorem, 

any 2-D continuous time deterministic systems may not become chaotic. 

As we can see in Figure 6-b as well as in Figure 7, the stable and unstable manifolds of the 

saddle equilibrium, x0 = [0,0], tangentially approache each other7; however, they do not cross 

each other in the case of Figure 7. 

Consider dynamic systems of dimension n > 2 with existing homoclinic points, which are 

constituted by the crossings of stable and unstable manifolds. Considering the previously 

introduced inclination (lambda) lemma [1], some concepts of the origins of chaotic dynamics can 

be then easily grasped. Once there is a homoclinic point created by the transversal crossing of 

stable and unstable manifolds, indicating that a homoclinic structure may exist (e.g., a 

homoclinic loop that is a closed loop consisting of stable and unstable manifolds), then a solution 

that flows on an orbit along the stable manifold will not settle into an equilibrium because it has 

drifted away along the unstable manifold according to the inclination lemma [1], demonstrated in 

Figure 7. Such a homoclinic structure that is attracting and is not a limit cycle is called a chaotic 

attractor (or sometimes a strange attractor [Ruelle and Takens]).  

 

                                                
7  In fact, the system in Figure 6-b and Figure 7 is asymptotically unstable in any neighborhood of  the two equilibrium points except in stable manifolds of 

x0 = [0,0]  (green curves) ;  the saddle equilibrium x0 = [0,0] affects the oscillating character of the elliptical equilibrium x0 = [-1,0]. 
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Figure 6: Examples of stable (green curves) and unstable (red curves) manifolds in the slope 

field of 2-D dynamic systems (linear and nonlinear 2-D dynamic HONNU). 

The phenomenon of the abrupt variations of a chaotic attractor as system parameters are 

varied can be related to the inclination lemma. This occurrence is called a crisis in a chaotic 

attractor and occurs under special conditions or when a chaotic attractor collides with unstable 

manifolds (as of a hyperbolic equilibrium point or a limit cycle). Thus, the chaotic attractor can 

suddenly increase in size when a transversal crossing with unstable manifolds occurs. 

 

b) Nonlinear 2-D dynamic system, Eq.(3-18) 

a) Linear 2-D system, Eq.(3-17) 
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Figure 7: Inclination (Lambda] Lemma - A curve crossing the unstable manifold of a saddle 

equilibrium point for system in Eq.(3-18). All points at the black crossing curve except 

those belonging to the stable manifold (green curve) represent initial conditions of 

asymptotically unstable solutions (orbits) that finally follow the unstable manifold.  

Some complicated nonlinear dynamic systems may display various attracting homoclinic 

structures in distinct regions of state space, resulting in several prevailing attractors (chaotic 

attractors, limit cycles) in those regions. The in-Lyapunov-sense stable solution 0( , )tx x does not 

leave the region of its particular attractor; however, under some circumstances, such as a change 

in system parameters (in autonomous systems) or an external disturbance (in nonautonomous 
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systems), the flow may drift toward a different attractor where it would not move otherwise. This 

transient behavior sometimes occurs without any internal or external system perturbations and is 

known as transient chaos. System perturbations propose a feasible reason for a flow to drift into 

a region of another attractor in a state space. If these changes are smooth, the transients among 

various distinct attractors might not be clearly distinguished and the system will seem to perform 

a single attractor behavior. This behavior is another type of multi-attractor behavior while the 

more obvious multi-attractor behavior in terms of coexisting attractors refers to systems with 

constant parameters and with sudden transitions among attractors [1].  

3.1.3 Stability Analysis of Nonlinear Systems 

Before dealing with the stability of HONNU as a non-linear system, it should be recalled that 

the stability of linear systems does not depend on the initial conditions, but only on the real 

values of the poles. In the case of the second-order non-linear dynamic system with variable 

damping in Eq.(3-19), where the nonlinearity can be considered a subset of dynamic quadratic 

neural unit (QNU) (or a plant controlled by a controller with variable damping, in terms of 

control theory [52]). 

 )()()()1()( 2 trtxktxxktx pv =+−+ ���  (3-19) 

The approach of motion in the vector field to asses the stability of such nonlinear dynamic 

systems can be used. Stability analyses of these systems (especially with technical tasks) often 

involve differential equations of the form, where the damping is not only a variable but also a 

function of position. The differential equations describing the dynamics of this type of nonlinear 

system can be expressed in a more general form as  

 )(
))((

))((
))(),(()( tr

tx

txP
txtxftx =

∂

∂
++ ��� , (3-20) 

where P( )  is the potential function, and ( )x t�  and ( )x t  are the state variables of a system. The 

unity static gain in Eq.(3-19) assures zero steady state error and the damping assures the stability. 

It should be mentioned that the unity gain can be reached by either the CNU or the QNU 

controller once the plant has been identified [52].  

For dissipative second order systems, we can obtain the derivative of energy function E  

whose derivative is given in [1] as 

 
( ( ))

( ) ( ) ( ) ( ( ), ( )) ( )
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P x t
E x t x t x t f x t x t x t

x t

∂
= ⋅ + ⋅ = − ⋅

∂
� �� � � � �  (3-21) 

Unlike with the limited potential field approach, a stability analysis of any dynamic system of 

any order can be done if the Lyapunov function is found. 

Theorem 1 : 

If x  is an equilibrium point of the system of state differential equations )(xfx =� and there 

exists a Lyapunov function for x , then x  is stable. If a strict Lyapunov function exists, then the 

equilibrium x  is asymptotically stable.  
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The stability of a non-linear control system is assured if the state space region in which the 

system flows lies entirely within the basin of attraction. The morphological properties of the 

basin of attraction to the equilibrium are related to the properties of the strict Lyapunov function. 

The larger area of existence of the strict Lyapunov function, the larger basin of attraction to the 

equilibrium assured. Therefore, the existence of the strict Lyapunov function over as large an 

area as possible is to be followed to assure stability of a non-linear system. 

In the case of non-linear second-order systems, the task simplifies, as the nonlinear 

differential equations describing the system can be expressed in state space representation as 
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The Lyapunov function can be chosen then as  

                  2 2 2
1 2 1 2
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1 1 1
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V x x x x x n

=

= ⋅ = ⋅ + ⋅ =∑ , (3-23) 

where its derivative is given as 

 1 2 1 1 2 2 1 2 2 1 2 1 2 1 2( , ) ( ( , )) ( , )V x x x x x x x x x x f x x x f x x E= ⋅ + ⋅ = ⋅ + ⋅ − − = − ⋅ =� �� � . (3-24) 

Eq.(3-21) and Eq.(3-24) show that the derivative of the Lyapunov function is equal to the 

derivative of the energy function for second-order nonlinear system in Eq.(3-22). 

  Figure 8 shows the flow of one stable and one unstable solution of an autonomous system in 

Eq.(3-19) for kp=1, kv=2.34, and the boundary of the basin of attraction is partly denoted by the 

stable trajectory converging to equilibrium ]0,0[ . Figure 9 shows the basin of attraction, denoted 

by ‘o’, and the area of existence of the strict Lyapunov function (with vertical ‘+’ stripes) in state 

space. The curves are nullclines denoting 0)( =tx� . 

In subsection 7.2.2 or in [52], the application of the subset of the cubic neural unit to 

nonlinear state feedback control is shown demonstrating optimal performance of a controlled 

plant (Eq.(3-19)) from any initial condition for any desired value. The corresponding adaptive 

controller (Eq.(7-10), p.94) eliminates the system nonlinearity and forces the plant to behave 

with variable damping (Eq.(3-19)) by adaptable nonlinear state feedback. 
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Figure 8: The slope field, flow of two solutions, nullclines, and limit cycle indicated in control 

Eq.(3-19) for kp=1, kv=2.34 in phase plane. 

 
Figure 9: The stability region for system in Eq.(3-19) for kp=1, kv=2.34, area of decreasing 

energy and nullclines. 

3.2 DETERMINISTIC CHAOS AS A SIGNIFICANT 

COMPONENT IN HEART RATE VARIABILITY DUE TO BEAT- 
BY-BEAT CONTROL OF THE AUTONOMOUS NERVOUS SYSTEM  

It is well known that even though the sinoatrial node itself is a very periodic pacemaker of 

heart rhythm, complicated heart rate variability is observed even with people in a relaxed state 

and a supine position. The complicated heart rate variability results from the complexity of the 

dynamic system which the cardiovascular system represents. The complicated heart rhythm  is 

due to the many physiological control mechanisms of the cardiovascular system, due to inputs 

(perturbations) to a human cardiovascular system (mental activities, humoral influences, …), and 

due to fast beat-by-beat control influences of the autonomous nervous system (ANS). Evidence 

of the existence of a deterministic-chaos component in heart rate will be proposed below, based 

on simulation experiments and on the evaluation of heart rate variability [18] to [23]. In other 

Basin of 
Attraction 
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words, evidence of the deterministic-chaos in heart rate will be shown to underline the important 

role of the ANS in developing the complicated behavior of heart rate, featuring high-level chaos, 

and including a considerable deterministic component caused by ANS feedback control [18] to 

[23]. Certainly, the fast control feedback influences of the ANS on heart performance are only 

one of the reasons for the development of complicated behavior of the heart rate. We propose 

that the deterministic contributions of the ANS to changes in heart rate variability are crucial, 

and that the novel diagnostic method can be based on tracking the dynamics of the deterministic 

heart rate variability component. Tracking the dynamics of the deterministic component of heart 

rate variability is made possible by the novel nonconventional neural architectures introduced in 

this work. 

By elucidating both the physiological (fast beat-by-beat control influences of the ANS, Frank-

Starling law, and peripheral resistance) and the technical principles (multiple-feedback control, 

transport delays) in a simplified model, [18] to [20], the existence of a significant chaotic 

component in heart rate will be concluded in this section. The focus will be on merging certain 

parallel aspects of both the physiological and the technical approaches, resulting in an 

understanding of the development of the deterministic-based chaotic component in heart rate.The 

reasons for the development of our novel method of evaluation of HRV (using artificial 

nonconventional neural units) for diagnostic purposes will be established. 

Further, the results and conclusions are introduced in this section. They have been achieved 

during recent years of investigation and experiments using the model of the fast beat-by-beat 

control influences of the ANS on heart performance in a model of oxygen transport in the human 

cardiovascular system [18] to [20]. These results and conclusions support a hypothesis of the 

existence of a significant deterministic component in the chaotic behavior of heart rate variability 

[18] and provide us with an explanation of the development of the deterministic chaos 

component in a human cardiovascular system. 

The human cardiovascular system  is modeled [18] [20] as a simplified, deterministic, 

continuous-time, non-linear system whose parameter settings make it work in different modes, 

from periodic-like through quasi-periodical to highly irregular behavior with features of 

deterministic chaos featuring high state-space dimension. It corresponds to the fact that the 

correlation dimension (exponent) saturates at a high embedding dimension (>10 e.g.) for 

sufficient length of the data series. 

   The development of the involved model [18] is based on the assumption that the 

complicated HRV may significantly result from the multilple-feedback control influences of the 

ANS. This assumption has been based on experience in technical applications, where the 

multiple-feedback control essentially leads to quasi-periodical or even more irregular (chaotic) 

system behavior. The model of the blood circulation system [18] is based on principles of the 

fast physiological beat-by-beat control of the heart performance rather than on those of the slow 

influences, such as humoral control mechanisms.  The actual heart rate (HR) of the myocardium 

is driven by the sinoatrial (SA) node, which works as the main pacemaker inside the heart, and 

whose electric impulses propagate through the myocardium and initiate heart contractions.  

Malfunction of the SA node or abnormal conducting in the paths of electric impulses in 

myocardium cause heart disorders that are usually easily detected by physicians via an ECG. In 

addition to the pacemakers inside the heart tissue, excitation of the heart is controlled by the 

vasomotor and cardio-inhibiting centers in the brain that represents the vagal feedback 
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controllers. Among others, this dominant baroreflex control mechanism influences the stroke 

volume and peripheral resistance. There are other important control mechanisms in the model, 

such as the Frank-Starling law and the natural inotropy effect. The abnormalities in the HR 

caused by the external vagal multiple feedback control may be not so easily detected from an 

ECG signal as malfunctions of the internal pacemakers, where particular dysfunctions are 

visualized by corresponding abnormalities in the ECG wave complex. For example, the outage 

of the SA node can be easily detected immediately by the abnormal P wave in ECG signal. 

Conversely, abnormalities caused by obstacles in the vagal feedback may not correspond directly 

to the electrical potential of a particular part of myocardial tissue, and need to be revealed by 

other non-linear measures assessing the complex nonlinear behavior  

 
 

Figure 10: Schematics of the blood circulation system model [18] [19]; the main part contains 

sympathetic and parasympathetic control centers (implemented as Fuzzy blocks HR-

Level, SV-Volume and R-Resistance), and transport delay blocks TD1 and TD2 

represent actual physiological delays on ganglial neural lines. 

 The simplified model has implemented all important cardiovascular fast control mechanisms, 

including baroreflex, the Frank-Starling law, peripheral resistance, respiration influence, arterial 

blood pressure wave propagation, peripheral resistance, and venous preload. The following part 

of the section focuses on the features causing the model to generate distinct heart performance 

regimes, rather than concentrating on the fine details of the model. Readers interested in a more 

detailed description of the model implementation may refer to [18] and [19]. The model is 

implemented in Matlab/Simulink environment. The baroreflex is considered the main control 

mechanism in the modeling of the fast beat-by-beat control. The main pacemaker of the heart 
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muscle is represented in the model as a special “saw-tooth” signal generator (block 1, Figure 10), 

which times the beats andor adjusts their amplitudes, i.e., performs the cyclic polarization and 

depolarization of the sinoatrial node. In our experiments, the time beating generator did not have 

implemented any internal myocardial dysfunction that would be caused by outages of SA node, 

nor had it any abnormalities in electric impulse conduction, nor had the model any random input 

at all. Similar to reality, the generator’s cyclic timing is subject to both kinds of neural activities: 

parasympathetic (vagal, prolonging the depolarization in case of increasing pressure and venous 

backflow) and sympathetic (shortening the depolarization in the opposite case). The systolic 

ejection volume is derived from the heart volume at the end of diastole (Frank - Starling law), 

and from the instantaneous HR  (inotropy effect). 

 The sympathetic and parasympathetic control of the cardiovascular system are represented by 

three fuzzy blocks (Fig.1), which influence variables of the HR, stroke volume, and peripheral 

resistance. Each of these fuzzy blocks has the same basic structure of rules  

 〈IF〈(BA is  AND (BV is  S)〉 ⇒ 〈THEN 〈(U is W)〉〉〉 , (3-25)  

where BA and BV are signals that represent activities of the arterial (i.e., aortal and carotic) 

baroreceptors and arterial receptors respectively. U is the action variable which affects the values 

of variables HR, R, and SV. Symbols Q, S, and W denote fuzzy values (of the type Large 

Positive, Middle Positive, etc.) of fuzzy variables BA, BV and U. Fuzzy inference blocks are 

built up on three membership functions in the input and on five in the output, with symmetrical 

distributions. The inference outputs are delayed, corresponding to the actual delays in neural 

transfer facilities, then, they are converted to deviation signals of HR, stroke volume, peripheral 

resistance and venous volume via non-linear characteristics (look-up tables). These signals 

represent the control variables of the model. After a proper tuning, the parameter’s influence on 

the aforementioned non-linear and delayed feedbacks results in moderate irregular oscillations of 

aortal pressure, HR, venous preload and other variables in the vicinity of their ideal steady state 

points. This type of behavior has not been conditioned by the respiratory influence in the model. 

Even in the case of suspended respiring system, the system continued to exhibit this complex 

behavior. 

 Similar to the cardiovascular system in which the afferent and efferent neural lines cause the 

vagal control signals to be delayed during their transfer from carotic baroreceptors to the brain or 

from the brain to atrial receptors, transport delay blocks (TD1 and TD2 in Figure 10) have been 

implemented and used to set various courses of vagal control under which the HRV has been 

investigated. Only these two (external) transport delays are employed for altering heart 

performance complexity in the model; unlike the organic system where other “external” 

mechanisms, e.g., humoral control, and “internal”, e.g., disturbed the sinoatrial or 

atrioventricular node, are present and make cardiovascular system more irregular.  

Results of the research on this topic are not too unified [6] to [14]. By investigation of 

deterministic chaos in heart rate, which also points to difficulties in reaching saturation of the 

correlation dimension (CD) that violates the worth of this method, we hope to provide a brief 

look at the model’s behavior and compare it to real myocardial disorders whose invariants were 

computed with the same basic algorithms.  

 The changes in heart rate variability for distinct settings of time-delays on the ganglial neural 

lines of simulated influences of the autonomous nervous system (Figure 10) were estimated as  
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where CD  is the correlation dimension, C(r)  is the correlation function, xi is a sample at time i, 

Θ  is the Heaviside function, and r>0  is a radius in phase space [1]. Because of the difficulties in 

reaching the saturation of the CD with the G-P method [3] for R-R diagrams from the model and 

from the disorder database [17], the results are more for loose comparison than for exact 

consideration. In other words, the characteristic invariants evaluated below should reflect 

changes in the complexity of the HRV of the model and of database data rather than showing 

their exact values. The CD was also checked by the program Dataplore (Datan, GMBH, trial 

version), even though the saturation of the correlation dimension was rarely reached for the data 

from simulations of one-hour physiological performances. LLE were also calculated by 

Dataplore. For all the computations, 4096 samples were used, which corresponds to one-hour of 

ECG recording. 

 
Figure 11: Power spectral density of simulated R-R diagram for TD1=TD2=0.3s. Estimated 

invariants: CD∈(3,4), LLE∈(0.5,1). 

 
Figure 12: Power spectral density of simulated R-R diagram for TD1=0.1s, TD2=0.6s. Estimated 

invariants: CD∈(1,2), LLE∈(0.5,1). 

Figure 13 to Figure 15 show the capability of the transport delays in afferent and efferent 

neural lines to modify the power spectra of the generated HR, where increasing irregularity of 

the HR, from periodic-like behavior to much more irregular types, is observed. The shape of the 

power spectra curve can be significantly modified by the delays. Through more sensitive and 
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proper tuning of the model (of TD1, TD2 and, if necessary, by fine tuning the fuzzy blocks 

representing brain interventions), it can reflect more accurately the curve of a healthy person.  

Seeking the origins of chaotic HRV through the principles of system non-linearity, and 

through the introduced transport delays in the neural feedback, together with the estimation of 

characteristic non-linear invariants, is one of the main goals of this section. 

Figure 17 serves to verify the results shown in Figure 18 because the saturation of the CD 

(calculated by Dataplore) was reached rarely for the dark areas in Figure 17 to Figure 19 (see 

Figure Appendix - 18). 

 
Figure 13: A sample of heart beat frequency of simulated data for settings of TD1=0.1s, 

TD2=0.2s. Some periodicity can be observed. Estimated invariants: 

CD∈(0,1),LLE∈(0,0.5) 

 
Figure 14: A sample of heart beat frequency of simulated data for settings of TD1=0.3 s, 

TD2=0.3. The HRV increase is observable contrary to (Fig.5). Estimated invariants: 

CD∈(3,4), LLE∈(0.5,1). 

  It has been proved that the model increases the irregularity of the heart rate with the 

particular various constants of the neural transport delays. The introduced model is deterministic 

(with no random inputs or run-time changing parameters) and shows the ability to bifurcate, i.e., 

it can increase the behavioral irregularity from periodic-like to quasi-periodical. Behavior can 
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also range up to the regimes where saturation of the correlation exponent is not reached even for 

the embedding dimension m=15 for the used length of samples. We believe that deterministic 

chaos in heart rate has been modeled by a nonlinear deterministic model and can be used in 

further research on the chaotic dynamics of HR, even in real physiological recordings. 

 
Figure 15: A sample of heart beat frequency of simulated data for settings of TD1=0.1s, 

TD2=0.6. Again, the HRV irregularity increase is observed in comparison to Figure 13. 

Estimated invariants: CD∈(1,2), LLE∈(0.5,1). 

 
Figure 16: Simple estimation of locations with higher and lower CD of heart rate as a function of 

the configuration of transport delays in the neural control feedback loop. Estimated by 

Eq.(3-26).   

If the parameters of vagal transport delays were being changed during the run, the HRV 

would vary, and the attractor of the heart rate would vary, and multiple attractor behavior would 

be observed, similar to the human cardiovascular system. In comparing the complexity of real 

disorder signals and model data, it can be assumed that the multi-attractor behavior of the heart 

might be caused by the intrinsic complexity of multilevel control feedbacks in an organism. The 

periodic-like behavior seen in patients after transplants [8] [9] corresponds to the decreased 

sensibility of the heart due to those controlling influences (vagal and humoral). 
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Figure 17: Estimation of the correlation dimension by the program Dataplore. Values fluctuate 

between the range of values characteristic of cardiac disorders (Figure 19) to the range 

typical of healthy subjects [9] [12]. 

 
  Figure 18: Estimation of largest Lyapunov exponents by Dataplore. 

Therefore, if low-dimensional chaos appears, it could be due to an improper function of the 

neural system influencing heart rate by vagal and humoral interventions, when the heart is not so 

sensitive as before transplant, but it is more sensitive than after the transplant. As based on 

observations from the model, the presence of low-dimensional chaos in HRV (Figure 12, Figure 

13 and Figure 15) might indicate some pathological phenomena due to some dysfunction of the 

neural control of the heart while higher dimensional (Figure 11 and Figure 14) or even multiple-

attractor behavior [14] [26] could correspond to a healthy state.  
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Figure 19: Example of the correlation dimension of the R-R diagrams of subjects suffering from 

cardiac disorders estimated by the same method by Dataplore. Data come from MIT-

BIH Database. From the charts above, locations of higher and lower complexity of 

HRV can be observed. The range of values of CD by Dataplore (Figure 17) 

corresponds to results from real signals presented in [9].  

3.3 BIOLOGICAL NEURONS 

AND UNIVERSAL APPROACHES OF MATHEMATICS 

Today, neurologists assume that neurons possess more computational power than previously 

thought (see page 16 above). In this section, the technical way of describing dynamic systems 

with functional capabilities expected by modern physiologists of biological neurons is revealed. 

The following subsections show that the well known and commonly used mathematical 

(technical) notation of complicated dynamic systems, i.e., the state space representation with 

nonlinearities and time-delays (which have been successfully applied to technology, such as in 

the approximation of complex systems, control) agrees ideas about the computation capabilities 

of biological neurons. This new comparison provides insight into biological neurons by 

paralleling their known structure to the universal achievements of mathematics. The comparison 

is made here as well as explored further in sections 4.1 and 4.1.2. 

3.3.1 Biology Inspired by Mathematics and Technology - The Inverse 

Inspiration 

It is interesting from the philosophical point of view that today we observe an inverse merge 

of technical concepts with the nature of biological systems. Generally, technical or mathematical 

researchers were inspired by biological systems (neural networks, genetic algorithms, immune-

based controllers). As the technology and mathematics advances further; however, useful and 

successful principles have emerged. We can see, that the commonly used technique for handling 

dynamic systems by engineers and mathematicians could correspond to how modern researchers 

look at a biological neuron. For example, the simple case of state-space representation shown in 

Eq.(3-27) can describe the higher computational capability of a neuron, and biological parallels 

can be drawn, as introduced in subsection 4.1.2. 
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 (3-27) 

where x is the internal state variable, y is the output variable, f ( )  and g( ) are static functions, u is 

a vector of inputs, and t is a continuous variable of time.  

 
Figure 20: The state-space representation, Eq.(3-27), is a common way in which technicians 

understand nonlinear dynamic systems. Sections 4.1 and 4.1.2 show how state-space 

repesentation can correspond to how current researchers could look at a biological 

neuron; i.e., assuming higher computational capability. 

In further subsections, the phenomena of nonlinearity and time delays, powerful in their 

ability to approximate state-space models, will be deduced as present in not only the synaptic but 

also the somatic neuronal part. This conception introduces new understanding of HONNUs and 

possibly of biological neurons as well. These novel proposals are made with respect to most 

universally applicable approaches of mathematics for solutions into deterministic dynamic 

systems as indicated in this subsection. It will be shown that the interpretation of the nonlinearity 

phenomenon in the synaptic and somatic parts of a neuron may depend on the static or dynamic 

nature of the artificial neural architecture, i.e., on the static or dynamic HONNU. The importance 

of both the synaptic and the somatic neuronal part will be introduced and emphasized, especially 

for the class of dynamic HONNU.  
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3.3.2 Nonlinear Synapses and Static HONNU 

Static HONNUs are suitable as solutions to static problems or for finding initial neural 

weights for dynamic HONNUs, as will be shown further in this thesis. From the mathematical 

notation of static HONNU, one can observe its biological analogy as shown in Figure 21 of this 

subsection
8
. 

 

 
Figure 21: Structure of the static quadratic neural unit where quadratic polynomial is understood 

as merely a synaptic nonlinear preprocessor of the neural inputs (QNU, Gupta et.al. 

2003);  

                                                
8
 Further in the development discussion in chapter 4, the mathematical notation of static as well as dynamic 

HONNU, will be shown, as it provides us with a more insightful interpretation of its biological analogy. 
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Figure 21 shows the general neural architecture of static HONNUs where fHONNU is a higher-

order polynomial function or other nonlinear and piecewise smooth function
9
, ν is the output of a 

synaptic neural operation, xa is an augmented input vector into a nonlinear synaptic operation, 

Wa is an augmented matrix of neural weights, u is vector of neural inputs, u0 is a constant neural 

bias, φ( ) is a somatic neural operation and y is the neural output. In fact, Figure 21 (Gupta et al., 

2003 [49]) is generalization of Figure 5 on page 16 and underlines the inspiration-from-biology 

approach as introduced in chapter 2 - State of the . The inverse approach is followed in further 

subsection that is concluding the analogies to a biological neuron upon inspiration from 

mathematic notation generally successful in technical applications. In other words, it will be 

shown how the state-space representation of nonlinear and time-delayed dynamic systems can 

correspond to the functionality of a biological neuron and thus it results in further development 

of HONNU architectures proposed in this work. 

 Further interpretation of the merge of mathematical and biological understanding to the 

dynamic HONNU and TmD-DNU is shown in subsection 4.1.2  as it belongs to the chapter on 

developments of this thesis.  

                                                
9
 More precisely, a function that is piecewise smooth (piecewise differentiable) with respect to adaptable neural 

parameters (neural weights, adaptable time-delays, adaptable dynamic parameters).  
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4 Development of Nonconventional 

Artificial Neural Architectures: HONNU and TmD-DNU 

n this section, artificial neural architectures called higher-order nonlinear neural units 

(HONNU), time-delay dynamic neural units (TmD-DNU), and from-their-combination 

resulting time-delay dynamic higher-order nonlinear neural units (TmD-DHONNU) will 

be introduced. They represent a novel class of neural architectures suitable for system 

approximation with both the minimum number of neural parameters and a simple internal 

architecture. The use of these units avoids the “gray-box” or even the “black-box” modeling 

effect of conventional neural networks because the internal mathematical structure of these 

neural models can be further investigated relatively easily. The complexity of conventional 

neural networks is reduced by the increased computational power of the nonconventional neural 

units developed and proposed in this work. Further in this chapter, the concept of 

nonconventional neural architectures called higher-order nonlinear neural units (HONNU) is 

discussed further. Contrary to conventional artificial neural units (neurons) (Figure 1) with linear 

aggregating function and their common network architectures (Figure 3, e.g.), the basic 

structures of HONNU have higher-order polynomials or other customizable nonlinear terms in 

the input-aggregating function fHONNU, where internal neural state variables are also aggregated in 

their dynamic versions (e.g. TmD-DHONNU). Especially in subsections 4.1.1 and 4.2, the 

conception of the neural aggregating function is proposed. It is shown how both the synaptic 

junctions as well as the somatic part of a biological neuron can be understood as computationally 

active while maintaining both the computational power of a neuron and a simple mathematical 

structure. A technique of practical application of HONNU to system approximation and the 

monitoring of changes in dynamics is summarized in section 5.  

4.1 STATIC HONNU  

In this section, static HONNU with nonlinear aggregating function of neural inputs fHONNU are 

introduced. It is indicated that the full notation of a polynomial aggregating function emphasizes 

computational capability of soma (and possibly nucleus) when compared to biological structure 

of neurons. Thus it may explain higher computational capabilities of biological neurons. 

4.1.1 Synaptic and Somatic Neural Operation and Static HONNU 

In this section, the class of novel neural units called HONNU, designed by M.M. Gupta 

(Figure 21) is further analyzed, and a theoretical proposal is made about the nonlinear 

aggregating function fHONNU = ν of neural inputs ui. Also a parallel with the biological 

counterpart of HONNU is drawn. 

 Recall, that Figure 4 on page 15 showed one of the conventional neural units that has 

incorporated single-argument nonlinear functions on neural inputs; the argument is the particular 

neural input (dendrite), and inputs are further linearly aggregated by weighted summation. 

Figure 21 shows QNU designed by M.M. Gupta et al. [49] [50] [51], where the nonlinear 

I 
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aggregating function of neural inputs is considered to be a nonlinear and merely synaptic 

preprocessor. The design of static HONNU (Figure 21) is still very simplified, but it significantly 

increases the computational power of a single artificial neuron. Below, it is proposed that not 

only does the nonlinear aggregating function of HONNU represent a pure synaptic preprocessor, 

but it should be viewed as a nonlinear aggregation of both neural synaptic and somatic 

operations. The aggregating function of neural inputs of HONNU can be understood as the 

interaction of neural synapses plus somatic neural operation according to HONNU’s 

mathematical conception. This proposal is based on a theoretical deduction and agrees with the 

mathematical concept of static HONNU, which are good universal approximators of complex 

functions (see below). Let us imagine that only a single dendrite is connected to each nonlinear 

neural synapse junction as shown in Figure 22. 

Figure 22: A simplified neuron with single dendrite on synaptic junction with somatic operation 

incorporating further interactions of neural inputs. The biological parallel of the 

decomposition of the aggregating function into synaptic and somatic part for quadratic 

neural unit (QNU) is in Eq.(4-1). 

The aggregating function of the simplified single-dendrite neuron shown in Figure 22 is 

decomposed for the case of the quadratic neural unit in Eq.(4-1) as 
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where wij are neural weights, uij are neural inputs (dendrites of other neurons), and u0 is neural 

bias.  
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To mimick a real neuron as in Figure 23, its synaptic junctions should incorporate more 

dendrites of other neurons. 

Figure 23: A simplified neuron with somatic operation incorporating further interactions of 

neural inputs; the biological parallel of the decomposition of the aggregating function 

into synaptic and somatic part for cubic neural unit (CNU). 

Of course, more than one dendrite may be connected to each synaptic point of a biological 

neuron as shown in Figure 23. Then the decomposition of the aggregating function into synaptic 

and somatic parts is not as clearly apparent as in the case of the single-dendrite neuron shown in 

Figure 22 and Eq.(4-1), and this would be rather a research of another field of science.  

 However, mathematically this decomposition does not have to be considered when the 

concept of HONNU is introduced because it is aggregated within a single polynomial function 

ν= νsynaptic+ νsomatic=fHONNU and the neural weights of this aggregating function are found by the 

cognitive nature (learning algorithm) of the unit. With regards to understanding HONNU as 

function approximators, one way is through a function approximation by the Taylor polynomial. 

In principle, a quadratic neural unit, shown in Figure 5, is capable of identifying a nonlinear 

function by approximating it with the Taylor polynomial of the second order. Similarly, a cubic 

neural unit is capable of identifying a nonlinear system by approximating it with the Taylor 

polynomial of the third order. The relationship between HONNU and the Taylor polynomial is 

indicated in Eq.(4-2). 
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Figure 24: General structure of a static higher-order nonlinear neural unit (HONNU), where 

polynomial is understood as simplified realization and interaction of both synaptic 

preprocessor of neural inputs and somatic neural operation 
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where f denotes the nonlinear aggregating function fHONNU as shown in Figure 24 and the 

derivatives are evaluated at x=x0. The concept of the Taylor polynomial approximation is only 

one way to understand the nonlinear synaptic operation of HONNU in mathematical terms.  A 
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nonlinear synaptic operation may be of various structures and can include different types of 

nonlinearities (piecewise differentiable for the gradient learning backpropagation to be realized); 

thus, the synaptic operation of HONNU can be modified to fit a particular application. 

4.1.2 Matrix Notation of Nonlinear Aggregating Function  

The matrix calculus is widely used for analyzing important properties of various systems, 

such as the stability assessment. Therefore, the availability of the matrix notation of synaptic 

operation of HONNU Eq.(4-5) can become an important feature of HONNU, especially when 

the internal static and dynamic structure of HONNU is to be standardized in this work. In this 

chapter, we develop the matrix notation for cubic neural units as well as for even higher-order 

neural units with higher-order polynomials in their synaptic operation. Such notation could be 

useful for further analysis of HONNU properties in the future. Further development of such 

‘nonlinear-system-matrix’ calculus focused on analyzing of static as well as dynamic HONNU 

exceeds the framework of this thesis and would deserve another proper research work. 

The quadratic neural unit (QNU) is the simplest representative of the class of artificial neural 

architectures that we propose, further develop, and standardize both their notation and structure 

in this work, and that are called higher-order nonlinear neural units (HONNU). The simplest 

representation of the full synaptic operation of QNU (Gupta et.al., [49] to [53]) is recalled in 

Eq.(4-3) as 

 0
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where s is the number of neural inputs, x0 is neural bias, xa is a bias-augmented vector of 

neural inputs into the synaptic neural operation fHONNU (including fQNU and fCNU), and Wa is the 

augmented matrix of neural weights as shown in Eq.(4-4) 
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The synaptic neural operation of QNU in Eq.(4-3) can be also expressed in matrix notation as 

shown in Eq.(4-5)  

 
T

Quadraticv ⋅= ⋅ ∈ 1
a a ax W x R . (4-5) 

The full synaptic operation of Cubic Neural Unit (CNU) can be represented in a summation 

form as  
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The summation in Eq.(4-6) cannot be interpreted using common vector and two-dimensional 

matrix multiplications, as in the previous case of QNU in Eq.(4-5), where two instances of an 

augmented vector and an augmented matrix are used. Therefore, the appropriate 

multidimensional matrix notation should be used to express the synaptic operation of CNU or 

any higher-order of the polynomial, i.e., the synaptic operation in matrix notation. The matrix 

notation of the synaptic operation of a full CNU represents an interesting theoretical task that is 

not yet common in literature and that was solved in this thesis. 
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The multidimensional matrix multiplication may be considered difficult to visualize. Below, an 

auxiliary mathematical technique is developed to allow us to perform multidimensional matrix 

multiplication in order to develop matrix notation for higher-order synaptic operation of 

HONNU. First, additional operators for matrix multiplications of higher-dimensional arrays need 

to be defined, ie., 3-D, 4-D or higher. 

Operator [4-1]: Let the small dot “ ⋅ ” or no sign represent an operator for common two-

dimensional matrix multiplication operator, as if two matrices m × n and n × p were multiplied 

and a two-dimensional matrix m × p would result. 

Operator [4-2]: Let the large dot “ • ” represent multidimensional matrix multiplication  operator 

analogous to the multiplication of a two-dimensional matrix m × n by a scalar b; however, where 

the elements of the two-dimensional matrix m × n are vectors or matrices and the element b 

becomes vector or matrix as well (b→b), (see example in Eq.(4-10)). 

Operator [4-3]: Let the cross in a circle “ ⊗ ” represent multidimensional matrix multiplication 

operator analogous to the multiplication of two two-dimensional matrices m × n and n × p, where 

the elements of the matrices are vectors or matrices as well, (see example in Eq.(4-11)). 

Let us denote common matrices and vectors as 
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Examples of multidimensional matrices are then 
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Then, the second introduced operation “ • “  represents matrix multiplication as 
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Following the example shows the other defined sign “ ⊗ ”, which represents matrix multiplication 

as 

 
[ ]
[ ]
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3 1 4 2 7 3 8 4
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11 1 12 2 15 3 16 4
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3 4 3 1 4 22

A A A b A bb
A B

A A A b A bb
 (4-11) 

The additional operators for multidimensional matrix multiplication defined in [4-1] [4-2] and 

[4-3] allow us to express the synaptic operation of HONNU (3-D, 4-D, and even higher) by the 

multiplication of multidimensional matrix composed from (n+1)×(n+1), ie., 2-D, augmented 

neural-weight matrices and (n+1)×1 vector of n neural inputs. It should be emphasized that a 

stricter and more rigorous mathematical notation of dimensions might be required by 

mathematicians. However, this simplified multidimensional matrix multiplication technique can 

be applied to solve the problem of the matrix notation of synaptic operation of HONNU such as 

CNU or even of higher-nonlinearity-order units as shown below. The summation form of the 

synaptic operation of CNU, shown in Eq.(4-6), can be composed of either the summation or the 

matrix notation form of QNU, as seen in Eq.(4-3) and Eq.(4-5), and this is shown below in 

Eq.(4-12). 
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where n is the number of elements of an augmented vector xa, and WQi is an appropriate 

augmented (n+1) × (n+1) weight matrix with elements selected by rule: 

 
, 0,1, ...,

0

if for

else.

[ , ] ijk k j i i nj k w ≥ ≥ ==

=

Q i
W

 (4-13) 

Applying the matrix operations introduced in definitions [4-1] [4-2] [4-3] on page 49, the 

matrix notation of CNU in Eq.(4-12) can be further simplified as 



 

51 

 

1

[ ] [ ]

[ ] .

Cubic

R

ν

 ⋅ ⋅  
   

⋅ ⋅   
= ⊗ ⋅ = ⊗ • • = ⊗ • • =   

   
   ⋅ ⋅   

= ⋅ • • ∈

T
QQ

T
QT T T T TQ

C

T
QQ

T T

C

00

11

nn

a a

a a
a a a a a a a

a a

a a a

Wx W x

Wx W x
x x x x x x W x

Wx W x

x x W x

��  (4-14) 

Because the term [ ]• •T

Ca ax W x  represents a single column vector whose elements are 

scalars, the sign “ ⊗ ” in the last row can be changed to “ ⋅ ”; thus, the synaptic operation of CNU 

can be expressed using the new multidimensional matrix CW , which appears as (n+1)×1 array (a 

column vector with matrices as its elements), as follows 

 
1

0

0

where[ ] , 1
n n n

Cubic ijk i j k

i j i k j

w x x x R xν
= = =

= = ⋅ • • ∈ =∑∑∑ T T

Cx x W x , (4-15) 

where we refer to CW  as the “upper weight  matrix “ (or “upper column vector). Consequently, the 

elements of upper matrix CW  are sub-matrices WQi for 0,1, ...,i n= . Sometimes in literature, the 

submatrices WQi as elements of the multidimensional array are called “pages” (e.g., in Manual 

for Matlab, Humusoft) . 

The full CNU matrix notation has been derived in Eq.(4-15). Using this approach, the matrix 

notation for general higher-order polynomial (higher than CNU that is of order n=3) neural 

synaptic operations can be developed. For example, for the fourth-order polynomial in the 

synaptic operation of HONNU 
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steps analogous to the case of developing CNU can be followed; that is, the formula can be 

expressed as a summation of cubic terms 
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The technique can be used again to upgrade the matrix notation to a higher-order polynomial 

synaptic function, and the appropriate form of weight matrices can be easily derived using 

previously shown results and is shown in Eq.(4-17).  

The elements of the fourth-order neural unit weight matrix FW  in Eq.(4-17) are CNU sub-

matrices WCi (3-D) that can be decomposed further into QNU weight sub-matrices (2-D), as in 

Eq.(4-14). According to Eq.(4-14) and Eq.(4-17), the matrixes WC and WF can be expressed as 

sparse 2-D matrices. The higher the sparseness, the higher the order of the polynomial of fHONNU; 

that is, the WC is less sparse than WF, and so on. 

To summarize section 4.1.2, auxiliary operators for multidimensional matrix multiplication 

were introduced in definitions [4-1], [4-2] and [4-3] and illustrated in examples using Eq.(4-8) to 

Eq.(4-11). The matrix notation was developed for the summation notation of the neural synaptic 

operation of CNU in Eq.(4-6) or for the general higher-polynomial-order neural synaptic 

operation shown in Eq.(4-7). Except for the development of the matrix notation of the synaptic 

operation of HONNU in general, the approach introduces the decomposition of multidimensional 

matrix
10

 multiplication into multiplication of 2-D matrices using the defined operators “ ⋅ ” and 

“ • ” and “ ⊗ “ 
11

. It also displays the relative simplicity of multidimensional matrix 

multiplication, which can be assumed to be too irrational at first sight. Establishing the matrix 

notation of synaptic operations of HONNU in this work can serve as a foundation for a new 

stability assessment of HONNU by matrix calculus; its particular development, however, 

exceeds the scope of this thesis. 

Further in this thesis, static HONNU are further shown as useful in finding the initial weights 

for dynamic HONNU and, therefore, problems with the stability of the learning algorithm of 

dynamic HONNU can be simply avoided. 

4.2 THE DYNAMIC NATURE 

OF A BIOLOGICAL NEURON AND DYNAMIC HONNU  

In this section, the parallel between HONNU and the simplified understanding to the 

functionality of its biological counterpart is further proposed and even more emphasized due to 

the dynamic nature of the neural unit. 

 The notion regarding the importance not only of the synaptic but also of somatic neuronal 

part has been introduced in section 4.1.1 as deduced from the full notation of HONNU that 

maintains high computational capability of a unit as well as its simple mathematical structure. 

The computational role of the somatic part becomes even more evident for dynamic HONNU 

which structure is shown in Figure 25. 

The neural state is represented by the variable ξ which represent the level of signal carried 

through axon forward to neural outputs. 

 

                                                
10

 By a multidimensional matrix, we mean 3-D or more dimensional matrices, i.e., arrays of dimensions 

(m×n×k×...). 

11
 “ ⊗ ” becomes “ ⋅ ” for HONNU, because only vectors with scalar elements are to be multiplied, as in the end of 

Eq.(4-12). 
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Figure 25: General structure of the dynamic cubic neural unit (CNU) compared to its biological 

counterpart. 

In the next section, the adaptable time-delays are introduced into dynamic neural units, 

inspired by successful applications of time delays into state-space models for system 

identification and control [45] [46] [56]. 

4.3 CONTINUOUS TIME-DELAY DYNAMIC NEURAL UNITS (TmD-

DNU) 

Before introducing nonlinear dynamic neural units with adaptable time delays (TmD-

DHONNU), the concept of linear time-delay dynamic neural units (TmD-DNU) will be 
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introduced. TmD-DNU represents a useful tool for the approximation of linear higher-order 

dynamic systems both with and without time delays. These units can also be used to identify 

precisely time delays within real linear plants. 

The nature of the time-delay dynamic neural units (TmD-DNU) originates from linear 

dynamic neural units that can also be viewed as a particular adaptive mechanism capable of 

approximation of a dynamic system in the form of a linear differential equation. The analogy to a 

differential equation indicates that we are going to deal with continuous dynamic neural units 

(DNUs), which are working in continuous-time, where the fastest sampling period of a whole 

neural architecture is practically determined by the capabilities of a specific numerical method. 

The simplicity and user customizable structure of TmD-DNU are among the main advantages of 

these novel neural architectures. They also represent a direct analogy to linear differential 

equations with (optional) time delays. From the user’s practical point of view, the appropriate 

structure of DNU can be defined according to prior information about the approximated dynamic 

system resulting from more detailed mathematical analyses, or according to less exact pragmatic 

speculations on system features. More various architectures of TmD-DNUs may be defined by 

an investigator and tested which would fit best the character of an investigated complex 

behaving dynamic system. TmD-DNU will be further classified into two major types: Type 

1 (Figure 26, Figure 27) and Type 2 (Figure 29). 

4.3.1 Time-Delay Dynamic Neural Units (TmD1-DNU, TmD2-DNU) 

The TmD-DNU–Type 1 (TmD1-DNU) might be viewed as the constituting element of 

conventional Time-Delay Neural Networks (TmDNN); however, we are focused on adaptable 

time delays within a single neural unit and not on the delays in inter-neuron connections that are 

common with tapped-delay neural networks (TDNN). This difference will become more 

apparent further in comparison to TmD2-DNU. The architecture of TmD1-DNU corresponds to 

the structure of the first-order differential equation with time-delayed input, shown in Eq.(4-19). 
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The Laplace transfer function of the internal dynamic structure of TmD1-DNU is derived in 

Eq.(4-20); this transfer function has been used to develop the learning algorithm for continuous 

time TmD1-DNU according to Eq.(4-28). 
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Figure 26:  Linear Time-Delay Dynamic Neural Unit - Type 1 (TmD1-DNU) with adaptable time 

delays Ti in i
th

 neural input where i=1…n.  

Let us consider modification of a single input DNU given in Figure 26, where τ1, τ2 and wi  

(i=1…n) are neural weights, n is the number of neural inputs, Tj represents
 
directly the time delay 

of j
th

 neural input, constant τmin is a minimum (positive) time constant of the unit, u(t) is vector of 

neural inputs, ξ (t) is an internal state variable, φ( )  is a somatic (transfer) function, y (t) is the 

neural output, and s is the Laplace operator. To assure the maximum stability of TmD-DNU, a 

simple quadratic substitution has been used. For simplicity and identification purposes, the 

neural somatic operation φ( ) of a neuron will be kept as linear. The neural architecture in Figure 

26 (i
th

 neural unit) represents a dynamic system analogical to a plant with time delays Tj on its 

input. It is shown as a single-input and unbiased unit in the block diagram in Figure 27 using a 

simple resulting transfer function GTmD1-DNU (s) with Laplace operator s and neural somatic 

operation ( )φ . 
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Figure 27: The analogy of a single input TmD1-DNU (without a bias) to a linear dynamic plant 

with time-delayed input (Figure 26). 

It should be emphasized that this proposed structure of TmD1-DNU, as in Figure 26 or Figure 

27, with an appropriately (small and positive) chosen time constant τmin and with introduced 
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positive adaptable neural parameters τ  and T1, assures the dynamic nature of the unit and its 

stability. It is also a preventive measure that improves the stability of the whole learning 

algorithm and possibly of the whole TmD-DNU networks. 

In further reading, the time-delay dynamic structure is further extended in order to improve 

the single-neural-unit approximating capabilities of TmD-DNU for even higher-order dynamic 

systems. 

Tf ≥ 0, Ti≥ 0 for i=0…n , τ ≥0 , τmin >0
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Figure 28: Linear Time-Delay Dynamic Neural Unit – Type 2 (TmD2-DNU) with adaptable time 

delays Ti on its input and with adaptable delay Tf  in state feedback of a unit. 

Researchers dealing with control engineering applications may sometimes deal with linear 

dynamic systems containing not only the input delays but also the time-delayed state variables. 

The reason for that can be seen in the introduction of time delay, here denoted as Tf , into the 

state feedback of a first-order system with input time delay as 
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The Laplace transfer function of the internal dynamic structure of TmD2-DNU is derived n 

Eq.(4-22); this transfer function has been used to develop the learning algorithm for continuous 

time TmD2-DNU in Eq.(4-28) and in Eq.(4-22) . 
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The introduction of adaptable time delay Tf  results in the increase of approximating capability 

for higher-order dynamic systems as shown in [45] and [46], thus it potentially results in more 
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robust dynamic neural networks with an even fewer number of neural parameters and a less 

complicated structure for a given problem. We propose the above dynamic structure in Eq.(4-21) 

to be the basis of the second type of time-delay dynamic neural units denoted as TmD2-DNU. 

As an example, the learning algorithm enhanced with the adaptable continuous-time-delay 

parameter Tf of the state variable ξ   is shown later in Eq.(4-35) and Eq.(4-36) and in Figure 34.  
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Figure 29: The analogy of a single input time-delay dynamic neural unit – type 2 (TmD2-DNU) 

to a linear dynamic plant (Eq.(4-21)) with both time-delayed inputs and state 

variable ξ (t). 

4.3.2 Dynamic-Order-Extended Time-Delay Dynamic Neural Units 

  

Figure 30: Dynamic-Order-Extended TmD-DNU with higher approximating capabilities 

resulting from higher density of poles and zeros in complex plain due to the adaptable 

input delays, second-order internal dynamics, and the adaptable time delay Tf (or more 

than one delay) in state feedback of a unit. 
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4.3.3 Time-Delay Dynamic Higher-Order Nonlinear Neural Units  

Time-delay dynamic higher-order nonlinear neural unit (TmD-DHONNU) are one of the most 

computationally powerful stand-alone neural units. They maintain the minimal number of neural 

parameters due to a combination of adaptable time-delays in neural inputs and in state 

feedback(s) of the unit, enhanced with the nonlinear aggregation of the inputs and state 

variable(s). This thesis is focused on the approximation of a complex system by as simple a 

model as possible, so the stand-alone TmD-DHONNU architecture represents one of the most 

powerful units for system approximation within the frame of the proposed research work. The 

general structure of time-delay dynamic cubic neural units as representative of TmD-DHONNU 

is given as 
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(4-24) 

where ui (t) are neural inputs, u0=x0=1 is neural bias, y (t) is neural output, ξ (t) and its m-1 

derivatives represent m internal neural state variables, wijk are neural weights, T0 …Tn are 

adaptable delays of n neural inputs, and Tn+1 …Tm are adaptable delays in m state feedbacks. 

Blue color again highlights the adaptable neural parameters. 

For further exploration of on TmD-DHONNU, see subsection 4.4.4, p.68. 

4.4 DEVELOPMENT OF THE LEARNING 

ALGORITHM OF HONNU, TMD-DNU AND TMD-DHONNU 

In this section, the supervised learning algorithm is shown for each type of the neural 

architectures proposed in this thesis.  

4.4.1 Learning Algorithm for Static HONNU 

The backpropagation (BP) gradient learning algorithm for static HONNU shown in Figure 31 

can be applied for its simplicity and applicability to various classes of artificial neural systems.  
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Figure 31: Supervised learning algorithm for static HONNU that can have either the scalar or the 

vector input; neural input u enters into the calculation of neural weight increments ∆wij. 

In the simplest form, the neural weights are adapted against the gradient of the performance 

index shown in Eq.(4-25) 
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where iw∆  is a neural-weight increment, J is the performance index, µ is the learning rate, and 

ε  is error between the neural and the desired signal output. The form of the backpropagation 

learning algorithm can be applied to static HONNU, shown in Figure 21, and the neural-weight 

increments are calculated by the set of Eq.(4-26). 
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In particular,  fHONNU, xa, and Wa are evaluated for quadratic neural units in section 4.1.2. 
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4.4.2 Learning Algorithm 
for Linear Time-Delay Dynamic Neural Units (TmD-DNU) 
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Figure 32: The principle of the supervised learning algorithm for all TmD-DNU, dynamic 

HONNU, and TmD-DHONNU; neural input u, internal neural state variables, and 

neural outputs enter into the calculation of neural-parameter increments  ∆wi , ∆Ti , ∆Tf , 

∆τ,...   

Because the internal dynamic structure of TmD-DNU (Figure 26 to Figure 28) represents a 

linear time-delay dynamic system, the neural-weight increment can be evaluated by the rules of 

Eq.(4-25); however, using the Laplace transfer function of the internal neural dynamics as shown 

in set of Eq.(4-28), 
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 (4-28) 

where Gi (s) is the i
th

 component of the Laplace transfer function of the internal linear dynamic 

structure of a linear TmD-DNU corresponding to i
th 

neural
 
input ui , as derived in Eq.(4-20) and 

Eq.(4-22); t is a continuous parameter of time, L
-1

 is the inverse Laplace transform, ξ (t) is the 

internal neural state variable, and wi represents the neural weight, n is the number of neural 

inputs, and u0 corresponds to an internal neural bias. It can be substituted by another adaptable 

neural parameter such as the adaptable time delay (Ti or Tf) or other adaptable dynamic 

parameters (such as τ ) of TmD-DNU (eg., Figure 28),  

By substituting Eq.(4-20) into Eq.(4-28), the learning algorithm for neural weights of TmD1-

DNU can be derived in Eq.(4-29). 
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Another neural parameters Ti (where i=0...n) representing input time delays can similarly be 

adapted as shown below 
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 where τ  representing the internal dynamics is adapted as 
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 (4-31) 

The examples of evaluation of particular neural-parameter increments for a single-input linear 

TmD-DNU without bias are shown further in this section. 

In the text below, the learning rules for adaptable time-delay parameters are shown in detail 

for each of the two proposed neural architectures TmD1-DNU and TmD2-DNU. 

Considering the dynamic structure of TmD1-DNU as shown in Figure 26 and as further 

simplified in Figure 27, the neural output of a single-input TmD-DNU can be expressed using 

continuous-time transfer function as 
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where e is the Euler’s number and usually φ(ξ)=ξ for a case of stand-alone implementation of 

a unit. The increments of neural parameters are evaluated according to Eq.(4-28). In particular, 

the actual increment of the neural time-delay parameter T1 can then be derived as 
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 (4-33) 

The implementation of neural weight increment ∆T1 in Eq.(4-33), which represents the 

adaptable time-delay parameter on neural input, is further depicted in Figure 33.   
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Figure 33: The mechanism for generating the neural weight increment ∆T1 of neural weight T1 

that represents the adaptable input time delay of TmD1-DNU (Figure 26, Figure 27). 

The increments of the other neural parameter τ  and of neural weights wj of TmD1-DNU 

shown in Eq.(4-19) and in Figure 26 and Figure 27 are generated similarly, that is by following 

principles in Eq.(4-29) and Eq.(4-31). 

The learning algorithm for the defined structure of TmD2-DNU and adaptable time-delay 

neural parameters τ  and Tf  is shown, as it displays good error convergence with excellent 

stability of a unit for a reasonably chosen learning rate µ and initial conditions. The maximum 

values of µ  maintaining stable adaptation were up to µ=0.01, and the size of µ also depended on 
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type of input signal
12

. To derive the learning algorithm for TmD2-DNU, the same rules in 

Eq.(4-28) may be followed while the neural output shown in Eq.(4-32) yields 
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where e is the Euler’s number and φ(ξ)=ξ  for simplicity. 

Considering the simplification in Eq.(4-34), the increment of weight ∆Tf , representing the 

continuous-time adaptable delay of the state variable of a neural unit, can be evaluated as follows 
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The resulting transfer function in Eq.(4-35) can be further decomposed into two time-delayed 

plants in series. The implementation of the weight increment ∆Tf may then be realized with the 

use of the already-generated neural unit output y(t) as  
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The implementation of Eq.(4-36) is then depicted in Figure 34 below. 

                                                
12

 In general, the smoother input signal, the higher µ could have been used and the adaptation of a unit was stable 

and converging. 
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Figure 34: The mechanism for generating the neural weight increment ∆Tf of neural parameter Tf  

in Eq.(4-34), Eq.(4-35), and Eq.(4-36), which represents the adaptable time delay in 

state feedback of TmD2-DNU (Figure 28). 

Similarly, the remaining neural increments of TmD2-DNU, such as wi , τ , and Ti , can be 

evaluated by appropriately modified rules in Eq.(4-29) to Eq.(4-31), where Eq.(4-32) yields 

Eq.(4-34) 

Besides the purposely designed stable internal dynamic structure of both TmD1-DNU and 

TmD2-DNU, no special measures were taken to assure the stability of the learning algorithm 

except for the appropriate choice of learning rate and the initial conditions. The choice of the 

initial neural parameters for TmD2-DNU, Eq.(4-21), should fulfill the condition 

 
min 2

π

τ τ
<

+

fT
, (4-37) 

which is an important stability condition for such a class of systems [45]. Based on the 

simulation experiments, the following simple guidelines were considered in setting the initial 

weights and the individual learning rates for each neural weight to ensure the adaptation stability 

of TmD2-DNU: 

1. Set the initial weights and neural parameters τ, T1 , and Tf  to be of random but, e.g., 

equal value τ (0) =T1(0)=Tf (0) (however fulfilling Eq.(4-37)). 

2. Set the appropriate initial learning rate (around µ = 0.001). 

3. Run the adaptation of the unit and observe which neural weights adapt too fast (i.e., 

which weights run toward much larger values than expected or oscillates in larger 

intervals than expected). 
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4. Decelerate learning of these significantly fast adapting neural weights by assigning 

them a lower value of the individual learning rate. In our experiments, the neural weight 

representing the static gain w1 was the one that had to be decelerated.  

5. Because the single TmD2-DNU have been displaying robust approximating capability 

(for higher-order linear dynamic systems), more simulations from distinct sets of initial 

conditions are recommended to achieve a better degree of accuracy (i.e., a convergence 

toward the local minimum, providing the unit with an even higher degree of accuracy). 

TmD-DNUs are focused upon as stand-alone neural units in this work, and a simple and pure 

learning rule (the dynamic backpropagation) is shown. Other, more advanced methods, such as 

learning with weight decay or other modifications of the learning rule, can be utilized as they are 

introduced [30]. 

4.4.3 Learning Algorithm for Discrete Dynamic HONNU  

For the purpose of implementing discrete dynamic HONNU (Figure 25, Figure 35), the 

backpropagation gradient learning algorithm was extended to its dynamic form. It will be 

introduced in chapter 5 that static and dynamic BP algorithms were combined to prevent 

instability problems of learning algorithms for the general class of nonlinear (unbounded) 

functions as synaptic and somatic aggregation operations of HONNU. This was the simplest, 

most practical preventive measure to use to run a stable adaptation of dynamic HONNU. 

 

 

Figure 35:  General structure of the discrete dynamic quadratic neural unit with the internal 

dynamics of order m. 

  A simple example of the learning rule for discrete dynamic QNU is given in its general form 

as follows 
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 and D represents the delay operator as 

 { } { }( ( ( ( 1( ) ( 1), ) ) 1) ).or more generally j jk k i iD Dx x x x x x −− ⋅ − ⋅= =  (4-39) 

 The discrete form of a system, obtained, for example, by simple differentiation, can be 

 ( ) ( 1), ( 2) ( ), ( ), ,( , , ) 0k k k k m k my f y y y u− − − −+ =aW… , (4-40) 

corresponding to a general discrete-time dynamic structure for which HONNU can be 

designed. The implementation of the learning algorithm of the discrete HONNU approximating 

system in Eq.(4-40) for m=2 is shown in Figure 36, where ym= yr is the output from a real plant. 

 
Figure 36: Sketch of the implementation of learning algorithm of stand-alone discrete single 

input dynamic HONNU with linear neural output operation φ( ), m=2, unbiased by w00 

=0. 

( ) ( 1), ( 2) ( 2),( , ) 0HONNUk k k ky f y y u− − −+ =aW
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4.4.4 Learning Algorithm for  
Continuous Dynamic HONNU and TmD-DHONNU 
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Figure 37: Dynamic quadratic neural unit approximating with the dynamic order of m. 

The neural output of the dynamic-order-extended QNU, shown in Figure 37, is given by state-

space representation in 

 

( )

[ ]

1

1
0

0 1

1

1 1

( ) ( ) ( )
( ), ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

where

( ,..., , )

( )

1 .

m mm n m n

HONNU i j HONNUm i m
i j i

i m n

m

j n m

j

T

T

t t t
t t

t t

t t
t t t t

d d d
f x x f

dt dt dt

y

x x x

d d
u u u

dt d

w

t

ξ ξ ξ
ξ

φ ξ

ξ ξ
ξ

−+ +

−
= =

+ +

−

−

= = =

=

= =

 
=  
 

∑∑a

a

x u

x … …

… … …

 (4-41) 

The neural output of continuous dynamic HONNU in Eq.(4-41), shown as QNU in Figure 37, 

then results from integrating it with respect to time as 
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 (4-42) 

where symbol τ  has been used here only for purpose of integration
13

. 

                                                
13

 Contrary to architectures of linear TmD-DNU where τ  represents an adaptable neural parameter of neural 

dynamics, e.g., Eq.(4-19) and Eq.(4-21). 
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Then, the weight increment for continuous dynamic HONNU can be evaluated for general m, 

according to the same principle of the learning algorithm as   
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Next, the learning algorithm for adaptable time delays will be expressed for a continuous 

time-delay dynamic QNU, shown in Figure 38; however, it is possible to generally apply this 

learning rule to time-delay HONNU implementations in general.  
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Figure 38: Type-2 continuous time-delay quadratic neural unit; type-2 indicates an adaptable 

time delay in state feedback of a unit. 

Similar to the continuous-time type of HONNU, e.g., in Figure 37 and Eq.(4-41), and due to 

its nonlinear nature, the design of the learning rule for TmD-DHONNU cannot utilize the 

Laplace transform while expressing the neural parameter increments, e.g., as in Eq.(4-33), 

Eq.(4-34), or Eq.(4-35). However, the advantage of the equality shown in Eq.(4-44) can be taken 

into account while developing the learning rule: 
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where the use of the inverse Laplace transform L
-1

 validates the fact that the derivative of time 

dependent variable y(t-T) with respect to its time-delay parameter T generally equals the negative 

value of its derivative with respect to time t. 

Simplifying the demonstration of the single-input unit (system identification), the notation of 

TmD-QNU, shown in Figure 38, is as 
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Considering Eq.(4-44) and the fact that the integral of summed terms equals the sum of the 

integrated terms, the increment of the adaptable time delay Tf in state feedback of QNU from 

Eq.(4-45) can be evaluated as 
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The neural weights wij vary in time (converge) during adaptation wij = wij (t); thus, it is 

important to explain the simplification in Eq.(4-46). The learning rule works even better if wij are 

thought of as being constants contrary to the analytical result in Eq.(4-46), that suggests 

evauating ∆Tf   as 
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The explanation revealed here results from the nature of adaptation by the gradient learning 

algorithm itself.  
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The adaptation of the neural unit starts with initial weights wij(0), which are presumably 

chosen as distinct from the desired accurate weights. During the adaptation, the neural weights 

wij (t) and other neural parameters converge toward desired, i.e., more accurate, values. If more 

accurate initial neural weights, represented by wij (t) for t>0, had been known before adaptation 

started (t=0), then they should be set as initial weights wij(0) ← wij  (t).  The integration in Eq.(4-47) 

would naturally result in even more accurate results for ∆Tf , and in faster learning as well. It is 

better to consider wij as more accurate constants rather than less accurate time-varying 

(converging) parameters.  It is even desirable to consider weights wij (and other neural 

parameters) as constant when calculating ∆Tf  in Eq.(4-46), as well as in the learning rules in 

general. The precise mathematical notation for evaluating the increment of the neural parameter 

∆Tf  is   
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Considering the neural dynamic architecture in Figure 38, all variables in Eq.(4-48)  are 

directly available, including the time derivative of ξ (t), which is measured directly on the 

integrator input, where it is denoted as ν (t) (the output from the aggregation function in Figure 

38). 

 Further, the learning rule for time delay in neural input into a unit T1 is shown. The learning 

rule can be simplified again, for the case of single input TmD-DHONNU, and for the neural 

architecture given in Eq.(4-45) it is evaluated as 
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In order to avoid the time derivative of the input u (t), the derivative of the input signal may be 

unavailable for stand-alone neural units or for units in the first layer of a network, the integration 

term in Eq.(4-49) can be modified by applying per-partes rule, 
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 Then Eq.(4-49) yields 
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where again no signal has to be derived with respect to time because all variables, including 

( )tξ� , can be measured directly within the neural unit. 
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5 Discrete HONNU and an Adaptive Approach 

to the Monitoring of Variability of Complex Time-Series 

n this section, the approximating capabilities of adaptive HONNU are utilized for 

monitoring the actual changes in variability of signals generated by complex (chaotic) 

dynamic systems. 

There are two basic approaches to retrieve the underlying dynamics of a system. The first is 

when the system inputs and outputs are available, and the number of state variables can be found 

or estimated, e.g., by analyzing the system. The second occurs when only output signals are 

available, such as with systems evaluations based on time series; the dimension of the state space 

than has to be reconstructed by appropriate methods, such as the false nearest neighbors method 

(Kennel et. al.1992). 

 As it can be concluded from section 3.1.2, systems with a potential occurrence of complex 

behavior shall be approximated by models performing at least in 3-D in order to develop chaotic 

behavior that is not simply periodic or quasiperiodic (e.g., such as with forced oscillators). 

However, even non-input single-state-variable nonlinear systems can become chaotic if they are 

discrete (recurrent), e.g., the well known logistic equation. 

A practical technique for the approximation of dynamic systems with stand-alone HONNU 

has been developed and applied. This technique helps avoid the major instability issues of 

dynamic HONNU during learning, i.e., during the fine online tuning of a nonlinear dynamic 

sytem. Neural weights and other neural parameters of HONNU and TmD-DNU converged 

during adaptation if the neural architecture were of appropriate mathematical structure (such as 

the polynomials in the case of QNU or CNU), and the initial neural parameters and learning rates 

were reasonably chosen. It can be deduced from the general properties of the learning algorithm 

shown in Eq.(4-26), and it was also usually observed during simulation experiments with 

HONNU and TmD-DNU. Moreover, static HONNU has displayed an excellent ability to 

converge for the general class of nonlinear aggregating functions without limitations upon the 

monotonousness and bounding, as with the use of higher-order polynomials or exponential 

functions. During simulation experiments, the static variations of HONNU (Figure 24) were 

trained to identify the structure and coefficients of a nonlinear governing equation. Assuming 

that a nonlinear governing equation is contained as a subset of the synaptic and somatic 

aggregation operation fHONNU, the learning process is stable for manually chosen learning rates 

and for random initial neural weights within the range (-0.5 , 0.5). The chosen learning rates and 

initial neural weights mean such values for which the learning algorithm was stable, neural 

parameters converged, and the values can be found on the first attempt or can be found manually 

by a few trial and error attempts.  

Since the mathematical structure of HONNU performs polynomial approximation, the unit 

can be enhanced further with additional mathematical functions other than polynomials, and a 

stand-alone HONNU can be used for approximations of wide range of complex systems. 

Dynamic HONNU also copes with stability problems during adaptation because of the generally 

nonlinear and unbounded function fHONNU implemented in its synaptic operation.  

I 
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This observation has lead to the combination of static and dynamic HONNU in order to 

provide dynamic HONNU with stability during learning. The initial values for dynamic HONNU 

can be approached first by those of static HONNU. The dynamic HONNU, which corresponds to 

the already adapted static one, can be then run from those initial values. Then, the stable and 

converging learning process of a dynamic HONNU can be observed. This second step also 

provides finer tuning of neural weights by dynamic modification of the backpropagation learning 

algorithm. The following diagram roughly summarizes the steps for approximating systems by 

discrete HONNU and consequently for detecting changes of signal variability, i.e., to 

approximate systems for which discrete complex output signals (time series) are available, such 

as heart beat tachograms,… 

Figure 39: The technique for system approximation and consequent monitoring of changes of 

signal variability by both discrete static and dynamic HONNU or HRV-HONNU (see Figure 40). 

The detection of every unusual increment of each neural parameter in discrete dynamic neural 

units according to the last point in Figure 39 is described in Figure 40. The parameter p in Figure 

40 is called the detection sensitivity parameter; the higher the value of p, the more significant the 

weight increments detected, but the less the number of markers drawn. 

 

If static neural unit converges, set the learned neural parameters as initial ones and adapt 

its dynamic version in single run over the whole evaluated signal. 

Detect and visualize unusually large increments of each neural parameter at every sample 

in order to detect significant changes in system dynamics, inter-attractor transitions, 

internal or external perturbations, artefacts, noise. 

If error is still too high and convergence poor, estimate number and type of possible 

system inputs and enhance the neural unit with adaptable input signal preprocessor, e.g., 

analyze power spectrum of a signal to find significant frequencies and introduce 

adaptable periodic inputs to increase approximating capability of a unit.  

If not, perform mathematical analysis to estimate the minimum embedding 

dimension or use appropriate methods, e.g., the false nearest neighbor method,... 

Scale the data if necessary (e.g., to range <0,1>) 

Check 2-D or 3-D phase portrait if simple nonlinear mapping is not hidden behind the data. 

Set random initial neural parameters. Adapt static neural unit in a number of epochs 

while error and neural parameters still converge over each whole epoch. 

 

If neural parameters of static neural unit do not converge or if error is still high, 

 decrease learning rates or change initial weights, use cubic neural unit instead of 

quadratic unit, increase embedding dimension. 
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Figure 40: The technique to detect and record variability markers (blue dots) for the monitor plot 

in . 

The plot of markers detecting the distinct neural parameter increments is called the monitor 

plot in this work. The monitor plot and its functionality are explained in Figure 41. 

Determine the reference values (e.g., averages) of increments for each neural 

parameter of a dynamic neural unit adapted to the evaluated time series: 

Ref_∆wi = ABS(AVERAGE(∆wi(k)))  for k=1..m ≤  N, 

where N is the number of samples of the evaluated series. 

 

Detect and visualize variability markers by comparing the neural weight increments to 

their reference values for every sample during a single epoch adaptation: 

for k = 1: N 

  for i=1:n 

 

     IF ABS(wi (k+1)- wi(k-1)) > p ⋅ Ref_∆wi   THEN   detection is positive,  

                record and draw the marker ; 

 

      end if;  

   end for;  

end for; 

where p is the detection sensitivity parameter, wi represents i
th

 adaptable neural 

parameter of the neural unit, n is the number of all adaptable neural parameters 

including the optional signal input preprocessor, N is the length of the series. 
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Figure 41: The monitor plot for the detection of changes in variability, transititions to another attractor, artefacts, system perturbations, 
(LLE=0.9 and CD=0.88 by the program Dataplore). 
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6 An Adaptive Approach to the 

Evaluation of Heart Rate Variability: HRV-HONNU 

ased on the neural architectures developed in chapter 4 and on the achievements 

shown in chapter 3, the principle of the novel adaptive method for real-time 

monitoring of changes in the dynamics of complex (chaotic) dynamic systems is 

introduced in this chapter. The method focuses on monitoring of actual changes in the dynamics 

of heart rate variability for diagnostic purposes. As the method is designed for complex 

(biological) systems, it is also very promising for applications with technical systems, especially 

for adaptive control and fault detection; the results on system identification and control underline 

this proposal [50] to [52] [54] [56] to [59] .   

All of the proposed neural units can test an unknown system for the existence of the 

deterministic nature of its behavior by observing the actual convergence of the neural 

parameters. A deterministic system shall result in converging neural weights of an adapted 

neural unit; the simpler the system or system output (i.e., the simpler the approximating model), 

the better the convergence of the neural parameters expected during approximation by a neural 

unit. 

 
Figure 42: Power spectral density of heart beat tachogram (picture copied and modified from : 

John D. and Catherine T. MacArthur Research Network on Socioeconomic Status and 

Health. http://www.macses.ucsf.edu/Research/Allostatic/notebook/heart.rate.html, retrieved 01/2007). 

In section 3.2, it was proposed that the dynamics of the cardiovascular system has a 

significant deterministic-chaos component due to the fast beat-by-beat control influences of the 

autonomous nervous system (ANS). In other words, it has been shown that distinct physiological 

time delays in the transfer of information from baroreceptors to the brain and back to the heart 

B 
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tissue result in significantly distinct heart rate variability, such as from periodic to highly chaotic 

[18] to [23].  

Previous experiments [53] have displayed convergence of stand-alone static HONNU and 

consequently of its discrete dynamic modification (discrete dynamic HONNU) during adaptation 

to heart rate time series; however, the error of the adapted unit was still significant. That error is 

currently lowered by implementing additional apriori knowledge into the HONNU, resulting in 

the neural unit called heart rate variability HONNU (HRV-HONNU) shown in Figure 43.  

It is well known amongst physiologists that heart rate periodically reflects breathing 

frequency and displays an intrinsic frequency component due to the tonus of vagus nerves 

(Figure 42). This knowledge can be implemented into HRV-HONNU (Figure 43 and Figure 44) 

as input signals featuring the two remarkable frequencies. 

Figure 43: Static heart rate variability quadratic neural unit HRV-QNU. Again, the blue color 

highlights the adaptable neural parameters. Input-signal preprocessor introduces 

breathing (u1) and vagal tonus (u2) frequencies.  

The exact breathing frequency and vagal tonus are not known when only the heart rate is 

being recorded. The phase-delay between heart beat, breathing, and vagal tonus is not known, 

nor can the amplitude of these signals be easily measured. Excelent cognitive ability allows 

HRV-HONNU to learn the appropriate configuration of these parameters by the backpropagation 

learning rule in the neural-input-signal preprocessor in Figure 43 and Figure 45. The 

approximating capability of HRV-HONNU is improved for adaptation to the dynamics of heart 

beat rhythm, contrary to the results in [53] where pure HONNU were used only. This 

improvement of HONNU, by the signal preprocessor, has its physiological analogy to 

cardiovascular dynamics (Figure 42). 
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Figure 44: Dynamic heart rate variability HONNU. Input-signal preprocessor introduces breathing (u1) and vagal tonus 

(u2) frequencies. 
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The learning rule for HRV-HONNU follows the principles shown in subsection 4.4.3, where 

the input-signal preprocessor is adapted by the same backpropagation rules. 

Both the static and the dynamic HRV-HONNU were used by the technique introduced in 

section 5. The significant variations of adaptable neural parameters and the observation of their 

patterns in the monitor plot (), as well as their possible evaluation during the adaptation of 

dynamic HRV-HONNU, establishes a novel method for both monitoring sudden changes in 

HRV and revealing intervals of similar HRV in heart beat tachograms. In fact, it does not matter 

if the changes of system dynamics are caused by external or internal perturbations or transitions 

among attractors for constant system parameters. According to the actual accuracy of HRV-

HONNU approximating a particular system, this method is suitable to distinguish between the 

transition to another attractor and the internal parameter perturbations by the simultaneous 

observation of both the actual values of the adapted neural parameters as well as their variations 

during adaptation. Moreover, external perturbations to the system may be detected using the 

adaptable input-signal preprocessor of dynamic HRV-HONNU shown in Figure 44. Both of the 

previously mentioned capabilities of the proposed method are a matter for further research.  

The results on the monitor plot presented in section 7.3 demonstrate the capability of this 

methodology to reveal sudden changes and to reveal intervals of a similar level of chaos even in 

such complex (chaotic) time series that common nonlinear methods have not achieved reliable 

results.  

In section 7.3 (page 96), the monitor plots of both pure deterministic time series of a high 

level of chaos (section 3.2 above, [23]) and real R-R diagrams from the MIT Arrhythmia 

database [17] are shown. 
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7 Applications and Results 

7.1 IDENTIFICATION OF TIME DELAYS 
AND SYSTEM APPROXIMATION USING TmD-DNU 

romising results were obtained during approximation of linear systems with dynamics 

of high orders and systems with time delays. These results are briefly presented below 

and underline the good approximating capability of time-delayed neural units as well 

as the excellent stability of the learning algorithm.  

7.1.1 Identification of Time Delays in Linear Systems 

An example demonstrating the capabilities of the stand-alone TmD1-DNU shown in Eq.(4-19)   

(Figure 26) (Figure 27) follows. The dynamic system to be identified by TmD1-DNU in this 

example is a linear plant with input time-delay as follows 

 ( ) ( ) 1.52 2.5 ( )r rt t ty y u=′ + − .  (7-1) 

Parameters of the plant in Eq.(7-1) will be identified by the proposed TmD1-DNU in 

Eq.(4-19), and are also shown in Figure 26 and Figure 27.  

 
Figure 45: Adaptation of TmD-DNU–Type 1, Eq.(4-19), (Figure 26, Figure 27), with linear 

neural somatic operation φ( ). The neural unit performs identification of a dynamic 
system with time-delayed input in Eq.(7-1). 

The initial neural parameters, which are the learning rate µ, the minimum time constant τmin, 

the initial neural weight w1(0), and other neural parameters τ (0) and T1(0) that represents the 

adaptable time delay, were set as follows 
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 3 3
min 1 1(0) (0)= (0)10 , 10 sec,  0.1µ τ τ− −= = = =w T . (7-2) 

In this example, the common input u (t) into both the identified plant and the dynamic neural 

unit, Eq.(4-19), is a periodic square signal measured on the output of a linear plant with a fast 

time constant (a simple low-pass filter) in order to achieve a smoother input signal. The neural 

weights were adapted by the learning rules described in Eq.(4-29). The neural parameter T1 

representing the adaptable time-delay parameter was adapted by Eq.(4-30), and is shown in 

Eq.(4-33) and in Figure 33. The process of adaptation of the unit in Eq.(4-19) for this example is 

shown in Figure 45. 

  
Figure 46: Error convergence of TmD-DNU–Type 1 for the example of identification according 

to Figure 45. 

 
Figure 47: Convergence of neural weight and parameters of TmD1-DNU for identification of the 

system in Eq.(7-1) according to Figure 45; neural parameter T1 represents the 

continually adaptable parameter of time delay (T1 =  1.5 sec). 
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7.1.2 Approximation of Linear Higher-Order Dynamic Systems 

Another example of approximating capabilities of the stand-alone TmD1-DNU in Eq.(4-19) 

and (Figure 26) (Figure 27) is shown in this subsection. A real system to be approximated is a 

linear higher-order dynamic plant represented by a continuous transfer function (7-3) without 

time delays. 

 
( ) 360

4 3 2( ) 17 84 48 80
( )

Yr s
r U s

G s
s s s s

=
+ ⋅ + ⋅ + ⋅ +

= .  (7-3) 

 
Figure 48: The approximation of a 4

th
-order dynamic system, Eq.(7-3), by unbiased (w0 = 0) 

TmD1-DNU  (Figure 26) with a linear neural somatic operation φ( ) . 

  
Figure 49: Error convergence of TmD1-DNU for the example of approximation with the sinus 

input signal according to Figure 48. 
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the previous example Eq.(7-2). The common input u (t) into the identified plant and the dynamic 

neural unit (Figure 31) is a periodic sinus signal (Figure 48). 

 

  
Figure 50: Convergence of neural weights of TmD1-DNU for approximation according to Figure 

49. Neural weight T1 represents the continually adaptable parameter of time delay. 

7.1.3 Case 2.b – Agreement in Step Response of Approximated System and 
Adapted TmD-DNU–Type 1  

Even though Case 2.a displays the good error and weight convergence (Figure 49 and Figure 

50) of the Type 1 unit (Figure 26) (Figure 27) while approximating system Eq.(7-3) with the 

sinus input signal (Figure 48), the step response of the learned unit still does not agree precisely 

(Figure 51) with the actual step response of the real system Eq.(7-3). It could be assumed that the 

disagreement (Figure 51) of adapted neural unit with the approximated system Eq.(7-3) might 

have been improved through out the input signal.  The periodic square input signal was applied 

to the next adaptation of the neural unit, and the converged values of previously adapted neural 

weights were applied as further initial values (Figure 50) 

 5 3
min 1 1sec10 , 10 , 0.36, 15.463, 1.4087w Tµ τ τ− −= = = = = . (7-4) 

The choice of significantly lower values of the learning rate µ improved both the stability of 

the learning algorithm and the ability of neural weights to converge sufficiently close to the 

minimum of the performance index J (e.g., Figure 31). The lower value of µ and the square input 

signal resulted in a significantly longer adaptation process (Figure 52, Figure 53); however, the 

increase in the accuracy of the approximation is crucial (Figure 54).  
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Figure 51: The step response of adapted TmD1-DNU shown in Figure 26 adapted to system in 

Eq.(7-3) with sinus input signal according to Figure 48. Further adaptation resulted in 

better agreement (Figure 54). 

 

 

   

Figure 52: Error convergence of TmD1-DNU adapted to system Eq.(7-3) with periodic square 

input signal and initial neural weights as in Eq.(7-4). 
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Figure 53: Convergence of neural weights of TmD1-DNU adapted to system Eq.(7-3) with 

periodic square input signal and initial neural weights as in Eq.(7-4). Neural weight T1 

represents the continually adaptable parameter of time delay. 

 
Figure 54: The step response of TmD1-DNU adapted to system Eq.(7-3) with periodic square 

input signal and initial neural weights Eq.(7-4) obtained from previous adaptation with 

sinus input signal (Figure 50). 
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( ) ( ),

( )
( 6.04) ( 11.25)

( )

14.8

( )ξ ξ

ξ
ξ

φ

− −+ =

= =

t
t t

t t t

d
u

dt

y

 (7-5) 

which represents the same dynamic structure as the TmD2-DNU (Eq.(4-21)) (Figure 29). 

Following the stability condition in Eq.(4-37) for time-delay systems as by Eq.(4-21) 

(introduced in [45] [46]), the initial neural parameters for adaptation of TmD2-DNU were set as 

in Eq.(7-6). 

 
1 1

min 1 1(0) (0) (0) (0)

1e 3, 1e 4 

0.1, 5,   = 0.5  . 

fT T

f

w

T T w

τµ µ µ µ

τ τ

= = = − = −

= = = =
 (7-6) 

The TmD2-DNU started from the initial settings thst represented the following system  

 

( ) ( ) .

( )
( 25) ( 25)

( )

25.1 0.5

( )ξ ξ

ξ
ξ

φ

− −+ =

= =

t
t t

t t t

d
u

dt

y

 (7-7) 

The training input signal (u (t) in Figure 55)  consisted of a quasiperiodic sinus wave 

component and a random square wave component (two sinus waves with mutually 

incommensurate frequencies of 1/5 and 1/8 rad/sec plus one random square wave component 

with mean = 0, variance = 0.5 and sample time = 10 sec) . The adaptation is depicted in Figure 

55 to Figure 57. 

 
Figure 55: Detail of adaptation of TmD2-DNU with linear output function ( )φ . The neural unit 

performs identification of a dynamic system Eq.(7-5) with both time-delayed input and 

state variable starting from initial conditions in Eq.(7-6).  
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Figure 56: Output error during the convergence of TmD2-DNU adapted to system Eq.(7-5) 

starting from initial neural weights as in Eq.(7-6) according to Figure 55. 

 
Figure 57: Convergence of neural weights of TmD2-DNU for identification of Eq.(7-5) 

according to Figure 55 and Figure 56. Neural weights T1 and Tf represent the 

continually adaptable parameters of time delays (see Table 2) 
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Identification by TmD-DNU–TYPE 2  -  Adaptation Accuracy 

TmD2-DNU:    
1min 1

( )
( - ) ( - )( )

ξ
τ τ ξ+ + = ⋅

f
T T

t
t t

d
w u

dt
 (4-21) 

To be adapted 
to: 

 
( )

( - 6.04) ( - 11.25)14.8
ξ

ξ+ =
t

t t
d

u
dt

   (7-5)  
 

Adaptation Mode ( Figure 55 - Figure 57 ) 
Test Mode 

( Figure 58 ) 

Initial Neural Parameters  

Eq.(7-6) 
Adapted Weights  

[ ]2( )t dte∫

J

 

1(0) (0) (0)  25τ = = =fT T  
114.722,  11.236

 6.069

τ = =

=f

T

T
 52.5 10−×  

Table 2:  Adapted weights of TmD2-DNU with linear somatic operation ( )φ , Eq.(4-21), (Figure 

29) for time of adaptation of 5000 seconds, constant learning rates, Eq.(7-6) and 

quadratic integral error criteria J evaluated for input signal u(t) (Figure 58) of system in 

Eq.(7-5) .  

 

 
Figure 58: The response of adapted TmD2-DNU, Eq.(4-21), (Figure 29) adapted to system 

Eq.(7-5) with input signal u(t) and initial neural weights  1(0) (0) (0)  25τ = = =fT T  

and further settings as in Eq.(7-6). 
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7.1.5 Approximating Capabilities of Time Delay Neural Units– Type 2 
(TmD2-DNU) 

 
Figure 59: Example of detail of adaptation of TmD2-DNU with linear output function ( )φ . The 

neural unit performs approximation of a dynamic system Eq.(7-8) with both time-

delayed both input and state variable (Table 3, case B).  

 
Figure 60: Example of convergence of neural weights of TmD2-DNU for approximation of 

system of 10
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 order (Eq.(7-8)). Neural weights T1 and Tf represent the continually 

adaptable parameters of time-delays (see Table 3, case C).  
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where s is the Laplace operator. In fact, the system in Eq.(7-8) has been selected because it can 

be approximated in both time and frequency domains by systems in Eq.(7-5) and in Figure 28 

and Figure 29 [45] [46].   

 

Approximation of TmD-DNU–TYPE 2  -  Adaptation Accuracy 

Structure of  
TmD2-DNU : 

11

( )
0.1 ( - ) ( - )( )

ξ
τ ξ+ + =

f
T T

t
t t

d
w u

dt
              

(4-21) 

To be adapted to: 10

1
( )

(2 1)
=

⋅ +
G s

s
   (7-8) 

 

Adaptation Mode (5000 seconds) 
TEST 

 MODE 

Case 

 

Initial Neural Weights  

1(0) 0.9=w  

Adapted Weights  [ ]2
( )t dte∫

J =

 

A 1(0) (0) (0) 25τ = = =fT T  
117.81, 9.57

9.70

τ = =

=f

T

T
 0.871 

B 1(0) (0) (0) 16τ = = =fT T  
116.30, 10.17

7.85

τ = =

=f

T

T
 0.566 

C 
1(0) (0) (0) 9τ = = =fT T

 
114.99, 11.49

6.49

τ = =

=f

T

T
 0.582 

D 1(0) (0) (0) 4τ = = =fT T  
110.08, 13.31

2.10

τ = =

=f

T

T
 3.16 

Table 3: Adapted weights of TmD2-DNU, Eq.(4-21), for various initial conditions, time of 

adaptation of 5000 seconds, constant learning rates, Eq.(7-6), and quadratic integral 

error criteria J evaluated for response to input signal of system Eq.(7-5) . 

It shall be emphasized that for all four sets of initial conditions depicted in two left columns 

of Table 2, all error plots converged toward zero, and all neural weights converged steadily to 

constant values for the constant learning rates in Eq.(7-6).  

The following table compares the results of adaptation in order to choose the most appropriate 

result. The unit with adapted weights from Table 3 was tested for three distinct sets of adapted 

weights, shown in Table 4. These weights were obtained by adaptation from various sets of 

initial conditions (Table 3). Apparently, the single input TmD-DNU–Type 2 adapted from initial 

conditions C or B (Table 3 and Table 4) provides the most appropriate approximations of system 

Eq.(7-8) (at least for the currently used learning parameters and applied inputs). 
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Figure 61: Testing of the adapted TmD2-DNU as it fits the system in Eq.(7-8); the agreement in a 

step response is shown. 

 

Values of J for adapted 

TmD-DNU–Type 2 (Table 2) 
TEST MODE: Values of Quadratic 

Integral Error Criteria  [ ]2( )t dte∫J =  
(7-5) p. 86 A B C 

square input (step response) 0.0349 0.2711 0.0489 0.0233 

sinus chirp signal input (increasing 

frequency), time range = 360 sec, ω = 

<0.01, 1> [rad/sec] 

0.3398 0.3449 0.2674 0.2870 

Quasiperiodic sinus wave + square 

wave input 
1.05 1.63 0.79 0.72 

Table 4: Testing of the adapted TmD2-DNU as it fits the system in Eq.(7-8). The values of J for 

neural unit adapted from various sets of initial conditions (Table 3) are compared also 

with J generated by system given in Eq.(7-5).  
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7.1.6 Conclusions on Linear TmD-DNU 

Two types of linear (continuous-time) time delay dynamic neural units including adaptable 

time delays have been proposed in this work. The units are denoted TmD-DNU - Type 1 and 

TmD-DNU - Type 2 (TmD1-DNU and TmD2-DNU, respectively). Their stand-alone applications 

with a simplified linear neural output (somatic) operation have been the focus of this work in 

order to demonstrate their abilities to identify time delays in dynamic systems or to approximate 

dynamic systems with dynamics of higher orders.  

TmD1-DNU has been shown capable of both identifying time delays within linear plants and 

approximating higher-order systems through the input delays.  

TmD2-DNU has been introduced as an extension of the unit dynamic structure where another 

adaptable time delay is introduced into the state variable of TmD-DNU; therefore, the 

approximation capabilities of TmD-DNU are enhanced.  

The disadvantage of using TmD-DNU for identification of time delays and system 

approximation is its (relatively) long time of adaptation which can be, however, significantly 

reduced by choosing another set of initial conditions or by re-running the adaptation in multiple 

epochs. In parallel, the problem of weight convergence toward local minima of error function is 

naturally reduced due to the robust approximating capability of TmD2-DNU and can be further 

eliminated by choosing another set of initial weights for adaptation. According to our 

experiments, the basin of initial neural weights that make the units converge to an appropriate 

degree of accuracy, i.e., to some local minimum which provides the approximation with a 

sufficient degree of accuracy, is practically large enough (Table 3, Table 4). It is also necessary 

to find appropriate learning rates for which the learning algorithm is still stable for a particular 

problem; nevertheless, this was not difficult to overcome, and a simple approach for finding such 

values has been mentioned. 

Amongst the major advantages of TmD-DNU is the capability to identify time delays within 

linear dynamic systems and its robust ability to approximate linear dynamic systems with 

dynamics of higher orders (e.g., the approximation of the 10
th

 order is shown) in a continuous-

time domain. Further, both the attractive simplicity of the learning algorithm and the excellent 

stability during adaptation due to the proposed design of neural structures (Figure 28 or 

Eq.(4-21)) are also advantages of using TmD-DNU. 

7.2 APPLICATION OF HONNU TO 
COMMON ENGINEERING PROBLEMS 

7.2.1 Identification of Technical Systems using HONNU 

A special subset of HONNU, extended by pragmatically introduced exponential nonlinearity 

(shown in Eq.(7-9)), was applied to identification of the dynamics of parallel manipulator in  

Figure 62, [47] [54] (Model provided courtesy of the Department of Mechanics, U12105, FS 

ČVUT, Grant # VZ MSM 212200008). For example, the following equation is the structure of 

HONNU adapted to the dynamics of leg a)  
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e

f
= = = =

− −

′ ′
′′ ′≈ = + + + −∑ ∑ ∑∑x w , (7-9) 

where y1 is the position of the leg a) (Figure 62), which is generated as state variable inside the 

unit, thus establishing the dynamic nature of the unit; wai, waij, and waeij are adaptable neural 

parameters (neural weights and internal dynamic parameters). 

A customized structure of the units has been designed to benefit from oth the stability of static 

HONNU and the accuracy of the dynamic HONNU; internal state variables (leg position and 

velocity) were generated inside each neural unit itself while the state variables of the other legs 

entered neural units as external inputs acquired from the identified system . 

 

 

Figure 62: Three modified stand-alone HONNU were applied to the identification of the tripod 

leg dynamics (manipulator model courtesy of the Department of Mechanics, U12105, FS 

ČVUT [47]). 

 

Figure 63: Simulation results of identification of dynamics of one tripod manipulator leg by 

hybrid dynamic HONNU (manipulator model by courtesy of the Department of Mechanics, 

U12105, FS ČVUT [47]) 
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Figure 64: HONNU for identification of the dynamics of the parallel manipulator; neural inputs 

are the measured state variables (available position and velocity of the legs) except for 

the each unit’s state variables, the neural outputs represents  positions of the legs 

identified by HONNU. 

7.2.2 State-Feedback Control 

During development of HONNU, the unit’s capabilities for control purposes were 

investigated and the structure of an adaptable neural state-feedback controller with variable 

damping was designed (Bukovsky, Redlapalli, Gupta, 2003 [52]). The purpose of the nonlinear 

state-feedback controller in Eq.(7-10) is to achieve a faster step response to square inputs by 

reducing the damping to a low value (initially zero) and gradually increase it to a positive 

optimum value such that the system will not overshoot the desired position. 
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where r (t)  is output from the state-feedback controller, fHONNU(xa,Wa) represents the HONNU-

identified dynamics of the controlled plant,  x1 is the actual position, x2 is the velocity (second 

state variable), xd is the desired value, kv and kp are adaptable neural parameters. 

 The structure of the fast neural nonlinear state-feedback controller, which uses a modified 

subset of CNU for parallel identification of an unknown, nonlinear plant with varying parameter 
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values and structure, was simulated with promising results (Figure 67). In principle, the 

controller is designed to approximate (identify) any linear or nonlinear plant feauring not only 

the coefficients of a governing equation, but also an unknown structure that can vary during the 

control process. For the dynamic systems of a second order, e.g., the controller (Eq.(7-10)) 

performed about three times faster control than a common linear state feedback controller 

without overshoot and steady state error (Figure 66). 

 

Figure 65: Simplified schema of architecture of the state-feedback neural controller using 

dynamic HONNU or TmD-DNU as system identifier and static HONNU as state-

feedback controller according to Eq.(7-10). 

The unknown controlled plant was represented by system 
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 Initial weights for system identification were set as [-10,-10,-10], and the learning rate for 

identification was chosen as µ=0.01. The learning rate for the neural control mode was set much 

lower than the learning rate for identification (µ=0.00033). The results shown in Figure 67 come 

from simulations conducted in two distinct operating modes. In the first mode, the subset of 

CNU identified the plant and the structure switched into the second (control) mode using the 

identified system parameters. It is advisable to analyze the plant to design an appropriate subset 

of CNU or QNU, to modify CNU or QNU by other nonlinear terms, to fit better the plant 

dynamics, thereby simplify the neural units and accelerate learning. 
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Figure 66: Step response of nonlinear neural controller with variable damping as in Eq.(7-10) 

compared to performance of linear state-feedback controller (ξ=α/ω, where s1,2= |α|±jω 
is a complex conjugated root of the 2

nd
 order linear control loop). 

 
Figure 67: The simulation results for adaptive control of a nonlinear dynamic plant in Eq.(7-11) 

with sudden perturbation of the plant damping parameter a. 

7.3 ADAPTIVE BEAT-BY-BEAT MONITORING 
OF CHANGES IN VARIABILITY USING HRV-HONNU 

As with the first example, evaluation of changes in the level of chaos in logistic equations by 

the proposed method (Figure 39) is shown below. Following the technique in Figure 39, it would 

be unrealistic and merely theoretical if the same structure of a unit were used as the data 
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generating system. To make this example more realistic and to demonstrate the universal 

applicability of HRV-HONNU (Chapter 6, Figure 43, Figure 44), the mathematical structure of 

the HRV-HONNU as the evaluating neural unit is used; it is different from the mathematical 

structure of the data generating system, i.e., the logistic equation  

 ( )( 1) ( ) ( )1k k ky a y y+ = ⋅ −⋅ , (7-12) 

where a is the bifurcation parameter. The mathematical structure of the dynamic HRV-HONNU 

(Figure 44) that detects the changes in the level of chaos in (7-12) is  
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where wij, ω1,  ω2, ϕ1 and ϕ2 are adaptable neural parameters, inputs u1 and u2 represents 

adaptable input signal preprocessor that increase the approximation capability of HONNU. Of 

course, the preprocessor does not have to be used with the logistic equation here; however, this 

example demonstrates the capability of HRV-HONNU to detect changes in variability even if the 

mathematical structure of the data generating system in Eq.(7-12) is simpler than the detecting 

neural unit itself (Eq.(7-13)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68: Detection of changes in dynamics of logistic equation in chaotic mode. The similar 

density of blue dots indicates intervals of similar chaos within the time series; the 

recurrence plot is in red. 
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As mentioned earlier, it might be necessary to use the adaptive signal input preprocessor 

(such as that in HRV-HONNU) if the mathematical structure of the data-generating system is 

unknown or too complicated and when error and weights of pure HONNU do not converge with 

an appropriate degree of accuracy. 

 
Figure 69: Detection of dynamic changes in the time-series generated by logistic equation with a 

small sudden increase of the bifurcation parameter a (on the right). The increased 

density of blue dots in top right corner indicates a change in the dynamics of the time 

series; the recurrence plot is shown in red. 

Further examples show the application of the adaptive method to the evaluation of simulated 

heart beat tachograms (Section 3.2 in this work, [18] to [23]) with various levels of deterministic 

chaos from periodic to highly chaotic, possibly due to multi-attractor behavior where correlation 

dimension and LLE could not be reliably evaluated [23] . The data evaluated below are highly 

chaotic time series generated by deterministic systems with constant parameters, i.e., generated 

by a simplified model of the fast beat-by-beat control influences of the autonomous nervous 

system on cardiovascular dynamics ([18] to [23]). The generated time series feature so high a 

level of chaos that the correlation exponent saturated only with eleven time series of 63 

generated and evaluated by the correlation dimension by the Grassberger-Proccacia algorithm [3] 

[23] (see section 3.2). The following results reveal intervals of similar variability (chaos), i.e., 

possible single-attractor intervals. The common nonlinear methods (CD, LLE) are well suited for 

the evaluation of signals up to a certain degree of complexity (variability), where multi-attractor 

behavior and excessive changes in dynamic behavior diminish the reliability of the invariant 

evaluation (section 2.1 in this thesis, [26]).  The sensitive allocation of the intervals of similar 

dynamics by HRV-HONNU, e.g., supported by the Recurrence Plot, can also improve the 

reliability of more generally known methods. 
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Figure 70: Monitor plot of simulated heart beat tachogram of lower variability than in Figure 71 
(LLE=0.46, Figure 10,  Appendix Appendix-3, [18] to [23]) 

Figure 71: Monitor plot of simulated heart beat tachogram of higher variability than in Figure 70 

(LLE=0.91, Appendix Appendix-3, [18] to [23]); both monitor plot (blue) and recurrence 

plot (red) indicate similar intervals of similar variability in a signal. 
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Figure 72: Monitor plot of simulated heart beat tachogram with high level of chaos than in 

Figure 70 and Figure 71(LLE=1.22, Figure 10, Appendix Appendix-3, [18] to [23]); the 

monitor plot (blue) indicates the intervals of similar variability in a signal more clearly 

than the recurrence plot (red). 

The results on simulated chaotic heart beat tachograms shown in monitor plots in Figure 70, 

Figure 71, and Figure 72, show the capability of HRV-HONNU to detect singularities (such as 

inter-attractor transitions, perturbations, artefacts) or intervals of a similar level of chaos (single-

attractor intervals) in a signal. The detection sensitivity of HRV-HONNU is scalable due to 

adjustable sensitivity detection parameters generally denoted as p (Figure 40). For highly chaotic 

signals, where the recurrence plot (red) may not be sensitive enough to clearly indicate the 

regions of similar variability and their borders (such as in Figure 69 or Figure 72), the HRV-

HONNU clearly indicates the important changes in the level of chaos due to its adaptive 

approximation of the system dynamics hidden in the highly chaotic signal. 

The simulated time series evaluated and shown from Figure 70 to Figure 72 do not 

include any internal or external system perturbations or any introduced artefacts; the simulated 

time series displayed so high level of chaos (regarding the 4096-heartbeat length) that evaluation of 

correlation dimension did not converge. The correlation exponent did not saturate with 

increasing embedding dimension. HRV-HONNU reflects the changes in signal variability even 

for recordings significantly shorter than the minimum signal length necessary for reliable 

evaluation by CD or LLE of highly chaotic time series (Figure 68, Figure 69). 

Below, the capability of HRV-HONNU to detect intervals of a similar level of heart rate 

variability is demonstrated on real R-R diagrams measured on patients suffering from cardiac 

arrhythmias [17] (namely the MIT-BIH arrhythmia database).  

First, the R-R diagram of a cardiac patient with significant changes in variability is 

shown in Figure 73 and Figure 74. Then, the results of HRV-HONNU are shown for other 

patients with less remarkable changes in variability (more stationary R-R diagrams) in Figure 75 

and Figure 76. 
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Figure 73: The monitor plot of variability changes and similar variability intervals of real R-R 

diagram of a cardiac patient (MIT-BIH, record # 222, female, age 84). 

MIT-BIH Record 222 (MLII, V1; female, age 84) 
Sample #:  Points of interest: 

20 6:45 Normal sinus rhythm 

1052 17:32 Atrial fibrillation 

1188 19:48 Atrial couplet 

1207 20:07 Atrial bigeminy 
1352 22:32 Paroxysmal atrial flutter, nodal rhythm 

1483 24:43 Noise 

1543 25:43 End of atrial flutter, nodal rhythm, normal 

1569 26:09 Paroxysmal atrial flutter, nodal rhythm 

Table 5: Table of medical annotations of ECG signal corresponding to R-R diagram in Figure 

73. 

 

Figure 74: Detail of changes in variability during atrial bigeminy (sample # 1207) of the patient 

from Figure 73 and Table 5. 
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Record 203 (MLII, V1; male, age 43) 

Sample #: Points of interest: 

12.5 5:00 Ventricular tachycardia, 4 beats and 9 beats 

794 13:14 Atrial fibrillation, ventricular couplets 

902 15:02 Noise 

1322 22:02 Ventricular couplet, PVCs 

1405 23:25 Noise 

1444 24:04 PVCs 

1486 24:46 Noise 

1599 26:39 Ventricular tachycardia, 7 beats 

1611 26:51 Ventricular couplet, PVCs 

1635 27:15 Ventricular tachycardia, 3 beats 

Table 6: Table of medical annotations of ECG signal corresponding to another R-R diagram in 

Figure 75 and Figure 76. 

Figure 75: Detail of detection of sudden variability change at the start of atrial fibrillation and 

ventricular couplets (sample # 794) (MIT-BIH, record 203, male, age 43). 

The results shown from Figure 73 to Figure 75 demonstrate the capability of HRV-HONNU 

to detect changes in variability as well as to allocate regions of similar variability within real R-R 

diagrams (heart beat tachograms).  

The details showing beat-by-beat detection of changes in HRV during atrial bigeminy in 

Figure 74, atrial fibrillation in Figure 75, or ventricular tachycardia in Figure 76, do not mean 

that HRV-HONNU can already detect and determine these cardiac arrhytmias. These figures 

demonstrate that the arrhythmias were accompanied by changes in variability and these changes 

were clearly detected by HRV-HONNU in the monitor plot. The detection and determination of 

particular arrhythmias by the proposed adaptive methodology is a matter of further research and 

require the cooperation of specialists from relevant fields of medicine.  
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Figure 76: Detail of detection of variability changes during ventricular tachycardia (sample # 

1599, 7 beats) (MIT-BIH, record 203, male, age 43). 

The intrinsic strength of HRV-HONNU lies in its beat-by-beat monitoring of the variability 

increase or decrease (as shown in Figure 68 or Figure 69); therefore, the suitable application of 

HRV-HONNU to the evaluation of HRV should be based on this property. Typically, the level of 

heart rate variability reflects the amount of oxygen delivered to the brain of the fetus. Thus, 

HRV-HONNU shall perform adaptive monitoring of the decrease or increase of variability (i.e. 

oxygen) and thus it can help to lower the danger of a fetus choking. This possible application is a 

matter of future research on the adaptive evaluation of heart rate variability, which can also be 

generally called “beat-by-beat HRV monitoring”. 
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8 Conclusions and Further Research 

8.1 SUMMARY OF ACHIEVEMENTS 

ccording to the goals introduced at the beginning of this thesis (p. 5), the author 

considers the proposed goals  of this thesis (p. 5) to be achieved.  

The particular goals were achieved as follows: 

1) A theory of novel neural architectures for the approximation (modeling) of complex 

dynamic systems is established in this thesis.  

1.1) A theory of nonconventional higher-order nonlinear neural units was further 

developed in this thesis. 

A theory of linear continuous time-delay dynamic neural units was established. 

A theory of nonlinear continuous time-delay dynamic neural units was established. 

A novel methodology for the approximation of complex systems using the developed 

neural units was founded. 

First, the concept of discrete and continuous and static and dynamic higher-order nonlinear 

neural units (HONNU) was introduced and further developed in this thesis (Sections 4.1, 4.2, 

and 4.4). These units have nonlinear (polynomial or other customizable nonlinearity) aggregating 

functions of neural inputs that aggregate also neural state variables in case of their dynamic 

modifications. The parallel between the nonlinear aggregation function of HONNU and real 

biological neurons was drawn, especially in Sections 4.1 and 4.2, with a focus on the higher 

computational capability expected from single biological neurons. During the research, HONNU 

has proven themselves to be universal and capable system approximators. The capacity for more-

accurate approximation is one of the advantages of continuous time-dynamic HONNU over 

discrete HONNU. On the other hand, the advantage of discrete dynamic HONNU is its natural 

ability to approximate complex dynamic systems with simpler neural architecture and for its 

natural capability to develop chaotic behavior (section 3.1) even in one-dimensional state space, 

due to higher-order nonlinear aggregation function.  

Second, the linear continuous time-delay dynamic neural units (TmD-DNU) were developed 

in Subsections 4.3.1, 4.3.2 and 4.4.2 and experimentally tested with very promising results on 

time-delay identification and system approximation (Section 7.1). These dynamic neural units 

are capable of identifying time delays in system inputs as well as in the state-feedback of a 

system (modeled by a neural unit); moreover, TmD-DNU are capable of approximating high-

order dynamic systems by low-order dynamic architecture due to time delays introduced as 

adaptable neural parameters. The increased approximating capability due to the increased density 

of poles in the left part of the complex plain belongs among the advantages of TmD-DNU.  

Third, the concept of nonlinear continuous time-delay dynamic higher-order neural units 

(TmD-DHONNU) was introduced in Subsections 4.3.3 and 4.4.4. These neural units benefit 

from the increased approximating capability of TmD-DNU (due to adaptable time delays in both 

neural inputs and state feedback) as well as from the universal approximating capability of 

HONNU (due to the nonlinear aggregation function). As universal approximators, TmD-

DHONNU are potentially equipped with the highest approximation ability together with simplest 

A 
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neural architecture and the minimum number of neural parameters out of the three proposed 

classes of dynamic neural units, i.e., HONNU, TmD-DNU, TmD-DHONNU. During the 

simulation experiments, the proposed novel neural units converged and generated good and very 

promising results. 

1.2) The learning algorithm for the adaptation of each of the classes of units has been 

derived in Section 4.4. All the units can be adapted by the dynamic modification of 

the gradient-based backpropagation learning algorithm. 

1.3) All the neural architectures (Section 4.1 to 4.3), the learning algorithm (Section 4.4), 

and the stability-maintaining adaptation technique of system approximation discussed 

in Section 5 are naturally simple, universal, highly customizable, and can be learned 

and used by researchers of various fields and levels. To overcome the instability 

issues during the learning of the dynamic HONNU, the simple approximation 

technique combining static and dynamic neural units was proposed in Chapter 5. 

The mathematical complexity of system approximation (control, monitoring) using the 

proposed novel neural architectures is crucially lowered by the stand-alone implementation of 

the neural units. 

 As an aside, for the purpose of system identification in Subsection 7.2.1, a simple hybrid 

network of static and dynamic HONNU with extended nonlinearity and extended dynamic order 

were designed and applied (Figure 62 to Figure 64). Each hybrid of static and dynamic HONNU 

in this network uses its dynamic structure to generate its own state variables while the other state 

variables are measured and introduced from the real system (if available). In this way, the 

hybrids of static and dynamic neural units pursue both the stable nature of static HONNU and 

approximation accuracy of continuous-time dynamic HONNU. 

The applicability of the proposed algorithms and methodology demonstrating the achievement 

of goal # 1 is shown in examples of system approximation and identification of time delays in 

Section 7.1 and control applications in Section 7.2.  

Further, achievements of goal # 2 (p.5) are discussed. 

2) A novel methodology for adaptive monitoring of sudden as well as smooth changes of 

variability (level of chaos) in signals generated by complex dynamic systems was 

founded in Section 5 and developed in Section 6. 

In particular, the achievements regarding the novel evaluation of complex systems are as 

follows: 

2.1) A novel class of special neural units (HRV-HONNU), with an adaptable input-signal 

preprocessor, was designed as an adaptive neural tool approximating the complex 

dynamics and responding to the sudden and continuous changes of a system in a real 

time (Section 6). 

 Even a stand-alone implementation of the HRV-HONNU unit (Figure 43, Figure 44) is capable 

of approximating a highly chaotic time series due to the adaptable input signal preprocessor. 

Results on the approximation of a complex time series (heart beat tachograms) by HRV-

HONNU displayed a sufficient degree of accuracy. Therefore, the mathematical simplicity, 

minimum number of neural parameters, and good stability of the dynamic HRV-HONNU during 

its adaptation due to the technique proposed in Section 5 are all in agreement with the 

fulfillments of goal # 1 discussed above. 



 

106 

2.2) A novel and universally applicable methodology for adaptive evaluation of signal 

variability was established based on the monitoring of the neural parameters of the 

proposed novel neural units. 

Due to its adaptive nature, the proposed methodology of adaptive evaluation of variability of 

chaotic time series is capable of: 

• detecting sudden changes caused by inter-attractor transitions, artefacts, internal or 

external perturbation into a system, noise, 

• allocating intervals of similar dynamics, e.g., single attractor behavior, in the time series, 

• reflecting the level of variability (complexity) of a signal in a particular region of a single 

attractor, 

• revealing the multiple attractor behavior of a signal by detecting the repeating patterns of 

changes in the system dynamics. 

A simple realization of the proposed methodology was tested on deterministic yet highly chaotic 

signals as well as on real heart beat tachograms for which common nonlinear methods, such as 

correlation dimension or LLE, do not provide reliable results, either because of too complex or 

time-varying dynamics, multi-attractor behavior, or a lack of the required number of samples. 

The variability evaluation method is scalable, i.e., the sensitivity detection parameters (Figure 

40) determine the minimum changes of variability that the unit detects; thus, the neural unit 

sensitivity can be scaled to both long-term or detailed short-term variability monitoring. The 

simulation experiments have shown the promising ability of the proposed method to detect even 

small changes in a high level of chaos in deterministic signals, and to indicate small changes in 

the nonlinear dynamics even where other methods, such as the recurrence plot, do not show clear 

results (Figure 69, Figure 68). In such cases, the proposed method using the developed “monitor 

plot” provides useful visualization of the results. 

The achievements regarding goal # 2, i.e., the novel evaluation and monitoring of variability 

of chaotic time series including real R-R diagrams (heart beat tachograms) are demonstrated in 

Section 7.3. 

8.2 LIMITATIONS AND CHALLENGES FOR FURTHER RESEARCH 

Even though the developed nonconventional neural architectures HONNU, TmD-DNU, and 

TmD-DHONNU are very promising universal approximators of complex systems and work very 

promisingly for technical systems, their use does not outperform the proper derivation of a 

mathematical model of a complex system if such an analysis can be done. Even though 

application of the proposed neural units to systems that are difficult to analyse is believed to 

introduce considerable improvements, the combination of customization of the internal neural 

architecture together with the proper mathematical analysis of a system can: 

• maximize accuracy of the neural units 

• minimize the time of adaptation, 

• and find initial neural parameters from which the unit would converge to a more 

appropriate minimum of error function. 
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The primary challenges of further research regarding the proposed neural units in common 

engineering problems are as follows: 

• Investigation of the applicability of stand-alone HONNU, TmD-DNU, and TmD-DHONNU 

to system approximation and control of nonlinear systems where piece-wise-linearization 

control approaches are commonly used.  

• Further investigation of a neural state-feedback controller in the regime of simultaneous 

system approximation and state-feedback control using HONNU, TmD-DNU, and TmD-

DHONNU. 

• Investigation of approximating capabilities of HONNU, TmD-DNU, and TmD-DHONNU 

with various types of nonlinear somatic operations φ( ) with a focus on neural networks using 

these neural units HONNN – Higher-Order Nonlinear Neural Networks, TmD-DNN – Time 

Delay Dynamic Neural Networks. 

• Further research of neural units with an adaptable signal input preprocessor for identification 

of unknown system input signals for the purpose of advanced monitoring of internal as well 

as external system perturbations. 

Regarding diagnostics and current state of research, the utilization of the adaptive method is 

limited to (sensitive beat-by-beat) detection of intervals where variability increases or decreases, 

to detection of repeating patterns in time series, or to detection of various kinds of singularities in 

complex time series (artefacts, perturbations). Currently, the method itself does not indicate the 

type of cardiac arrhythmias (so far), nor has it been investigated whether it could indicate their 

incoming occurrence. However, it has been shown that if arrhythmias occurred, they were 

accompanied (preceded or followed) by changes in variability that were clearly detected by the 

proposed method.  For example, the method can also function as a simple watchdog to detect 

unusual patterns or sudden changes in the heart beat of a patient. Once such changes are 

detected, physicians can focus on the specific recordings using other methods, view and analyze 

particular beats in ECG. Thus the method proposed today is potentially very useful in supporting 

other medical diagnosis methods.  

The primary challenges of further research regarding the proposed theory and methodologies 

in biomedical engineering problems are as follows: 

• Beat-by-beat HRV fetal monitoring is the very important topic of current research. The 

established theory and methodology enables sensitive monitoring of the variability increase or 

decrease. Thus, the level of oxygen delivered to the brain of a fetus can be monitored using 

the adaptive method and visualized in the “monitor plot”. 

• Development of Type-2 HRV-HONNU for adaptive evaluation of HRV where the frequency 

component of the vagal nerve tonus would be due to the limit cycle of the dynamic neural 

unit, rather than caused by a periodic input within the input signal preprocessor (the lower 

number of neural parameters, more sensitive detection of changes in variability) 

• Investigation of capabilities of HONNU to detect and distinguish between particular types of 

cardiac arrhythmias related to the scalability of the detection sensitivity of the proposed 

method. 

• Investigation of multi-attractor dynamics in complex systems in general. The proposed 

methodology can introduce new knowledge in the field, e.g., the investigation of heart beat 

dynamics by HRV-HONNU of patients before, during, and after a cardiac surgery. 
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Appendix 

Appendix-1 Classification of Nonconventional Neural Units  

 

Figure Appendix - 1: Classification of basic nonconventional continuous artificial neural units 

according to aggregating nonlinearity fHONNU=ν and its time integrations (dynamic order). 

Figure Appendix - 2: Classification of basic time-delay dynamic neural units according to 

aggregating nonlinearity ν and the type of delay implementation. 

Novel Classification of Artificial Neural Units

0

n n

i j

i j

ij

i

x wx
= =

∑∑
0

n n n

i j k

i j i k j

ijkx wx x
= = =

∑∑∑

D
y

n
a
m

ic O
rd

er ( th
e #

 o
f in

teg
ratio

n
s o

f

ag
g
reg

ated
 v

ariab
le ν

)

Nonlinearity of the Aggregating Function ν

Conventional Dynamic

Linear Neural Units 

(Linear Aggregating Function)

Conventional  Static

Linear Neural Units
(Linear Aggregating Function)

Static

Quadratic Neural Units

(Static QNU)

Static Cubic Neural Units

(Static CNU)

Dynamic

Quadratic Neural Units

(Dynamic QNU)

Dynamic

Cubic Neural Units

(Dynamic CNU)

Dynamic-Order Extended

Quadratic Neural Units

(Dynamic QNU)

Dynamic-Order Extended

Cubic Neural Units

(Dynamic CNU)

0

n

i

i

ix w
=

∑ν =

2+

1

0

Dynamic-Order Extended

Linear Neural Units 
(Linear Aggregating Function)

‘1’ ‘2’ ‘3’

Classification of Time-Delay Dynamic Neural Units (TmD-DNU)

0

n n

i j

i j

ij

i

x wx
= =

∑∑
0

n n n

i j k

i j i k j

ijkx wx x
= = =

∑∑∑
T

y
p

e o
f

tim
e-d

elay
im

p
lem

en
tatio

n

Nonlinearity of the aggregating function ν

Linear Type-2 Time-Delay

Dynamic Neural Units 
(Linear Aggregating Function)

Linear Type-1 Time-Delay

Dynamic Neural Units 
(Linear Aggregating Function)

Type-1 Time-Delay

Quadratic Neural Units
(TmD1-QNU)

Type-1 Time-Delay

Cubic Neural Units
(TmD1-CNU)

Type-2 Time-Delay

Quadratic Neural Units
(TmD2-QNU)

Type-2 Time-Delay

Cubic Neural Units
(TmD2-CNU)

Extended Time-Delay

Dynamic Neural Units 
(Linear Aggregating Function)

Extended Time-Delay

Quadratic Neural Units
(TmD3-QNU)

Extended Time-Delay

Cubic Neural Units
(TmD3-CNU)

0

n

i

i

ix w
=

∑ν =

‘2+’

‘2’

‘1’

‘1’ ‘2’ ‘3’



 

113 

Figure Appendix - 3: Novel classification of basic artificial neural units according to aggregating 

nonlinearity ν, its time integrations (i.e., the dynamic order), and adaptable time-delay 
implementation; only some of most general types are shown for simplicity (not all types 

are shown for simplicity of the picture). 

Figure Appendix - 4: Novel classification of basic artificial neural units. A detail of static QNU, 

dynamic QNU, DOE-QNU, TmD1-QNU, and TmD2-QNU. 
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Appendix-2 Basic Architectures of New Neural Units 
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Figure Appendix - 5: Discrete dynamic quadratic neural unit. 
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Figure Appendix - 6: Disrete dynamic cubic neural unit. 
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Figure Appendix - 7: Discrete DOE-CNU, i.e. CNU with multiple step delay and multiple 

feedback of aggregated variable ν. 
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Figure Appendix - 8: Continuous time dynamic quadratic neural unit. 
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Figure Appendix - 9: DOE-QNU, i.e., QNU with multiple integration and multiple feedback of 

aggregated variable ν. 
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Figure Appendix - 10: DOE-CNU, i.e., CNU with multiple integration and multiple feedback of 

aggregated variable ν. 
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Figure Appendix - 11: Dynamic CNU with dynamics modified to improve unit’s stability. The 

implementation of first-order-dynamics transfer functions instead of integrators improves 

the stability of the unit 
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Figure Appendix - 12: DOE-QNU with dynamics modified to improve unit’s stability 
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Figure Appendix - 13: General sketch of dynamic HONNU with dynamics modified to improve 

unit’s stability. 
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where u’i and u’j enter the unit as measurable inputs if available (see Subsection 7.2.1, p.92). 
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Continuous Time-Delay Dynamic Higher-Order Nonlinear Neural Units 
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Figure Appendix - 14: Time-Delay Dynamic Quadratic Neural Unit – Type 1 (TmD1-DQNU) 

with adaptable time delays Ti on its inputs. 
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Figure Appendix - 15: Time-Delay Dynamic Quadratic Neural Unit – Type 2 (TmD2-DQNU) 

with adaptable time delays Ti on its inputs and with adaptable delay Tf  in state feedback 

of a unit. 
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Figure Appendix - 16: Time-Delay Dynamic Quadratic Neural Unit – Type 3 (TmD3-DQNU) 

with adaptable time delays Ti on its inputs and with adaptable delays Tfi  in state feedback 

of a unit. 
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Figure Appendix - 17: Time-Delay Dynamic Cubic Neural Unit – Type 3 (TmD3-DCNU) with 

adaptable time delays Ti on its inputs and with adaptable delays Tfi  in state feedback of a 

unit. 
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Appendix-3 Deterministic-Chaos Component in HRV due to 
Autonomous Nervous System in Simulated Heart 
Beat Tachograms 

Figure Appendix - 18: Estimation of correlation dimension and largest Lyapunov exponents of 

the simulated (deterministic) heart beat tachograms. 

    Td2 

Td1 Invariants 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

cd 0.9 0.597 0.33 0.9 0.24 1.31 0 0.1 
 LE dataplore 0.461582 0.069697 0.1782 0.577496 0.87679 1.051364 0 

cd 0.88 0.91 1.54 0.7 0.77 2.6 0 0.2 
 LE dataplore 0.192896 0.112913 0.743975 0.94718 0.951438 0.349783 0 

cd 0.88 3.72 2.63 1.78 0.16 0.61 0.85 0.3 
 LE dataplore 0.092986 0.912021 0.931753 0.961684 0.711637 0.376044 0.345889 

cd 1.12 1.61 1.4 1.01 0.64 0.79 0.64 0.4 
 LE dataplore 0.98697 1.196473 1.058155 1.018447 0.408001 0.228432 0.175687 

cd 1.69 0.79 0.48 0.97 0.47 0.82 0.54 0.5 
 LE dataplore 1.222222 1.312413 0.365175 0.491596 0.318435 0.317947 0.550687 

cd 0.93 1.28 0.53 0.14 0.39 0.62 0.44 0.6 
 LE dataplore 1.152495 1.192635 1.218797 0.743845 0.723132 1.213171 1.215821 

cd 2.71 0.77 1.58 1.35 0.55 0.1 1.95 0.7 
 LE dataplore 1.117804 1.221 1.326558 1.247193 0 1.024518 1.4002 

cd 1.58 0.57 0.69 0.36 1.02 1.45 1.27 0.8 
 LE dataplore 0.829657 0.420043 0.508948 0 0 1.277436 1.406169 

cd 0.91 0.82 1.13 0.8 2.34 2.26 0.59 0.9 
 LE dataplore 0.160882 0.223682 0.496045 1.087937 1.222046 1.228941 1.303357 

Table Appendix - 1: Estimated CD and LLE of tachograms (4096 heartbeats each, evaluated by 

Dataplore) simulated by model [18] (to [23]). 

HRV00112 HRV00144
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Td2 
Method Converged 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 yes yes      

0.2 yes yes    yes  

0.3 yes      yes 

0.4       yes 

0.5        

0.6        

0.7 yes       

0.8        
T

d
1

 
0.9 yes yes      

Table Appendix - 2: CD and LLE, Table Appendix - 1, were rarely evaluated with the saturation 

of the correlation exponent (4096 heartbeats, evaluated by Dataplore) due to too complex 

variability and possible multi-attractor nature of the heart beat tachograms simulated by 

model [18] (to [23]). 

 


