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Overview of CFD
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Remark: foils with ,black background® can

be skipped, they are aimed to the more
advanced courses

Rudolf Zitny, Ustav procesni a
zpracovatelské techniky CVUT FS 2013


http://en.wikipedia.org/wiki/Computational_fluid_dynamics

B3 CFD and PDE

CFD problems are described by transport partial differential equations (PDE) of the
second order (with second order derivatives). These equations describe transport of
mass, species, momentum, or thermal energy. Result are temperature, velocities,
concentrations etc. as a function of x,y,z and time t

PDE of second order are classified according to signs of coefficients at highest
derivatives of dependent variable ® (for more details, see next slides):

»Hyperbolic equations (evolution, typical for description of waves, finite speed of information transfer)

2 2 : ' '
a (D a (D oD e oD o rI?())(Zazr?eples.l supersonic flow around a plar_we, flow ina Laval
_ —Ai—= , pulsation of gases at exhaust or intake pipes
5 5 = f ot oy
ot OX | |
convection by velocity ¢

»Parabolic equations (evolution problems, information is only in the direction of evolution variable t -
usually time but it could be also distance from the beginning of an evolving boundary layer)

2
8(1) 8 (D Examples: evolution of boundary layer (in this case t-
+ = f represents spatial coordinate in the direction of flow and x
Gt axz is coordinate perpendicular to the surface of body)

» Eliptic equations (typical for stationary problems, infinite speed of information transfer)
O°D N GRONS
oy®  ox°

= 2 _ Examples: subsonic flows around bodies (spheres,
f V- (UCD) —avie+3S =0 cylinders), flow of incompressible liquids




B3 CFD and PDE

Why is it important to distinguish types of PDE?

Because different methods are suitable for different
types (e.g. central differencing in elliptical region
and time marching schemes in hyperbolic or
parabolic regions)



Characteristics (1/3)

Type of PDE of the second order (hyperbolic, parabolic, elliptic) i1z closely related to the notion of characteristics.
What 1z the characteristic of PDE, written for simplicity only as the 2D cage (only X,y coordinates, the 3D cage ig
analogical)

o bach *D f can be function of x,y,®
+ —

o2 Tay o7 and first derivatives.

Fact: 1f all @ values and all first derivatives o/ dx, 0D/ dy are prescribed along an arbitrary curve, it 18 possible to
- : 2 y 2 =2 f 2 =2 { - . - .
evaluate all zecond order dervatives 0°@/ ", 0@/ ", "D/ dxdy using the differential equation. Let us assmne

that the curve 15 expressed in the parametric form x(t).y(t) and that the specified fust derivatives are also expressed
in parametric form &P/ éx= p(r), oD/ v = g(r).

Then 4 X(7),y(r)-parametrically defined curve, where
& _ e +@ﬂ: 22D ar . PO & Y| first derivatives p(t),q(r) are specified
or & dér v or ax’ or dxdy or
& & @@_@2<x>@+&2¢15x
or & or & or & Or oxdy Ot

v




Characteristics (2/3)

These equations can be expressed in matrix form as

V(22 () Right hand side is fully
2 é; € g{p é; determined by prescribed first
= o 0 oo | | or derivatives (by boundary
o X |20 (& conditions) along selected curve
\ or & | @,2 \OT

This system can be solved under “normal” circumstances (for almost any selected curve) giving continuous second
derivatives as a function of specified “boundary” conditions (prescribed first derivatives). However, as soon as
determinant of previos system is zero (and it depends upon a,b,c coefficients of PDE and upon the selected curve),
the system is indefinite and second derivatives are not unique and continuous. At these particular curves something
happens with the solution. And just these curves are characteristic lines (surfaces at 3D problem), passing through
an arbitrary point X,y(,z). From the requirement of zero determinant immediately follows

Dy Ty Er
()baa+c()[}

a(%)z—b%+r:=ﬂ. Proof!!!

and



Characteristics (3/3)

This is quadratic equation for the slope of characteristic curve (dy/dx) having solution

dy _ b+ yb*—dac Is the solution of quadratic
dx 2a equation correct? Check signs.

In the case that b2-4ac>0 there exist two real characteristics (hyperbolic equation), for 52-4ac=0 there is only one
real characteristic (parabolic equation) and as soon as &#2-4gc<0 there are no real characterics (eliptic equation).

ddy

2 2
aaf? — Z’? =f a=1,b=0,c=-1 b4ac=4 characteristics o ==1
x
2
a@f—? + % = a=1,b=0,c=1 b*-4ac=-4 characteristics Ey = +i (not real)
x
2
o oo =f a=1,b=0,c=0 b*-4ac=0 characteristics Ey =0
x

& oy




BB Characteristics

‘D 0D f
— = Wave equation - hyperbolic
2 2
ot OX t

Value @ at point x,t is determined
only by conditions at red boundary

There can be
discontinuity across
the characteristic lines)

Domain of

/ dependence

—> X




B8 PDE type - example

One and the same equation can be in some region elliptic, in other hyperbolic
(for example regions of subsonic and supersonic flow, separated by a shock

wave). AY —

/(/

An example is Prandl-Glauert equation describing steady, inviscid,
compressible and isentropic (adiabatic) flow of ideal fluid around a slender body

(e.g. airfoil) e )5 O 2D u:ag V:ag
ay2 - oX ' oy

M=.72 (Critical Mach Number)

Function ®(Xx,y) is velocity potential, M is Mach number (ratio of velocity of
fluid and speed of sound). For M<O0 (subsonic flow region) the equation is
elliptic, for M>1 (supersonic flow) the equation is hyperbolic. See wikipedia.

Another example: Laval nozzle



http://en.wikipedia.org/wiki/Prandtl-Glauert_equation
http://en.wikipedia.org/wiki/Shock_wave
http://en.wikipedia.org/wiki/Laval_nozzle
http://upload.wikimedia.org/wikipedia/commons/e/ed/FAA-8083-3A_Fig_15-9.png
http://upload.wikimedia.org/wikipedia/commons/e/ed/FAA-8083-3A_Fig_15-9.png

B8 PDE type — example PWV

Pulse Wave Velocity in elastic pipe
(latex tube, arteries)

Model-hyperbolic equations

Experiment-cross correlation technique
using high speed cameras

Mackova, H. - Chlup, H. - Zitny, R.: Numerical model
for verification of constitutive laws of blood vessel
wall. Journal of Biomechanical Science and
Engineering. 2007, vol. 2, no. 2/1, p. s66.




&3 PDE type — example WH

Water Hammer experiment with elastic
pipe (latex tube, artificial artery)

Model-hyperbolic equations

Experiment-cross correlation technique
using high speed cameras

Pressure sensors

4X 1.04 Latex tube

p [Pa]




E®sHyperbolic equations W

Flows in a pipe. Time dependent cross section A(t,x), or time dependent mean
velocity v(t,x). Compressible fluid or elastic pipe. Relationship between volume and
pressure is characterised by modulus of elasticity K [Pa]

P
sound a 5
0 p op_

Problem is to predict pressure and flowrate courses along the pipeline p(t,x), v(t,x).
Basic equations: continuity and momentum balance (Bernoulli). In simplified form

: EVROPSKA
7 UNIE

K
K oA
@ + K* @ L+ K
ot OX
neglected convect|ve
B
,0
Speed of
Velocity v(t,x) can be eliminated by neglec
friction, giving 82
2

8t2 o2



HA
‘E,

E:s:u

e2iHyperbolic equations WH

How to derive equations of characteristics

P 2N _o  muliply by A and

ot e ox add both equations
LN
o ox
ap
a ) p( ) €,
this could be thls could be
directional derivative directional derivative

dp:ap+8xap dv oV axav
dt ot ot ox dt ot at OX

%:izlaz ﬂ,:ii %za,
dt A a at

characteristic

EVROPSKA
UNIE

dx
—=—-—a
dt
N

characteristic



#2Hyperbolic equations WH

There are two characteristic lines corresponding to two values of A

C
1 1 dxl_ 1dp+ dv ‘ T
17 a dc adt  Pdr” AR "
A
Integration along the characteristic line from Ato C
1(P —pa) + p(ve —vy) = —Atf_va|vA|
a C A C A 2D
1  dx, —1dp dv T
A = —= —_— = - =
‘ a dt . adt Par ¢ . S

Integration along the characteristic line from B to C

fp

—1
7 (pc = pB) + P(Uc = UB) = _AtEUBIUBI



B Method of characteristic

Solution of previous system of 2 algebraic equations .
*
1, ps—Ps fh ‘ et % hla
V. =— +V, +Vy ———(V, [V, | +Ve |V b v,
C 2 pa A B ZaD(Al Al B| B|)) L & i B >
a p,+p fh |
Pc :E M—I_ILD(VA _VB)+E(VB [V [ VA |V, )

hv(t)

fh
Pc = pA_pa(VC _VA)_2_I§VA |VA |




B Method of characteristic

Pipe L=1m, D=0.01 m, speed of sound a=1 m/s, inlet pressure 2 kPa (steady velocity v=0.6325 m/s).

|=1;d=0.01;rh0=1000;f=0.1;a=1;p0=2e3; FIESEUIE [pgles

vO=(p0*2*d/(I*rho*f))"0.5
n=101;h=l/(n-1);v(1:n)=vO;p(1)=pO0;
for i=2:n
p()=p(i-1)-f*rho*v0"2*h/(2*d);
end
dt=h/a;tmax=3;itmax=tmax/dt;thr=f*h/(2*a*d);
for it=1:itmax
t=it*dt;
fori=2:n-1
pa=p(i-1);pb=p(i+1);va=v(i-1);vb=v(i+1);
pc(i)=a/2*((pa+pb)/a+rho*(va-vb)+fhr*(vb*abs(vb)-va*abs(va)));
vc(i)=0.5*((pa-pb)/(rho*a)+va+vb-thr¥(vb*abs(vb)+va*abs(va)));
end
pc(1)=p0; vb=v(2);pb=p(2);
vc(1l)=vb+(pc(1)-pb)/(a*rho)-fthr*vb*abs(vb);
vc(n)=vO0*valve(t); va=v(n-1);pa=p(n-1); T
pc(n)=pa-rho*a*(vc(n)-va)+f*h*rho/(2*d)*va*abs(va); time (0-3 s)
vres(it,1:n)=vc(1:n); pres(it,1:n)=pc(1:n); ‘

B

0.4 0.6 0.8

r -11000

n=101

n—

800

P=pC;V=VC;
end
pmax=max(max(pres))/p0
x=linspace(0,1,n);
time=linspace(0,tmax,itmax);
contourf(x,time,pres,30)

600

400

0 0.2




¢zl Method of characteristic

Incorrect boundary condition at exit (elastic and rigid tube connection)

fh
Pc = Ps +pa(VC _VB)+T§VA |VA )

o | /\\/\\/\ \/\M

p__

Bernoulli at an elastic tube
oV . op . fov|v|
ot oX 2D

Bernoulli at a rigid tube







The following slides are an attempt to
overview frequently used numerical
methods in CFD. It seems to me, that all
these methods can be classified as specific
cases of Weighted Residual Methods.




BB MWR methods of weighted residuals

Principles of \Weighted Residual Methods will be demonstrated for a typical
transport equation (steady state) — transport of matter, momentum or energy

Convective
transport

Numerical solution ®(x,y,z) is only an approximation and the previous equation will
not be satisfied exactly, therefore the right hand side will be different from zero

V- (i®)—aV’®d+S =res(X, Y, z)

res(x,y,z) is a RESIDUAL of differential equation. A good approximation @
should exhibit the smallest residuals as possible, or zero weighted residuals

jres(x, Y,Z) -W.(X,Y,z)dxdydz =0, 1=12,..N
Vv

w; are selected weighting functions, and V is the whole analyzed region.



BB Approximation — base

Approximation is selected as linear combination of BASE functions N;(X,y,z)
D(X,Y,12) = ZCDJ' N (X,Y,2)
J

Substituting into weighted residuals we obtain system of algebraic equations for
coefficients @, (N-equations for N-selected weight functions w.,)

j (V- (GD) —aV2D + S)w.dxdydz =
\Y

:J'(v.(uchij)—aVzZCDij +S)w.dxdydz =0
v J J



ES3 \Weighting functions

Weighting functions can be suggested more or less arbitrarily in advance and
independently of calculated solution. However there is always a systematic
classification and families of weighting functions. Majority of numerical methods can
be considered as MWR corresponding to different classes of weighting functions

»Spectral methods (analytical w;(x))

(Boundary element methods) { 5

»Finite element methods (Galerkin — continuous weighting function)

_ AN

X

»Control volume methods (discontinuous but finite weighting function)
(or Finite Volume methods) W =h(X—X;_y;,) —h(X—X;,1,)

v

X

»Collocation methods (zero residuals at nodal points, infinite delta functions)
(Finite Differences) W, = S(X—X;) ‘

X:



- S P ECT RA L METHOD ORTHOGONAL FUNCTIONS

General characteristics
» Analytical approximation (analytical base functions)

»>Very effective and fast (when using Fast Fourier Transform)
»Not very suitable for complex geometries (best case are rectangular regions)

T(x)=2T;P (X


http://en.wikipedia.org/wiki/Spectral_method

- S P ECT RA L METHOD ORTHOGONAL POLYNOMIALS

Weight functions and base functions are selected as ORTHOGONAL functions (for
example orthogonal polynomials) P,(x). Orthogonality in the interval x (a,b) means

In words: scalar product of

b
j g (X) PI (X) Pj (X)dX — 5” different orthogonal

functions is always zero.

Polynomial name |a b
Legendre -1 |1 1
1
1

Tschebyshev I -1
Tschebyshev 11 -1 .
Laguerre 0 00 exp(-x)

Hermite -0 | exp(-x?)



http://en.wikipedia.org/wiki/Spectral_method

& \WHY ORTHOGONAL?

Why not to use the simplest polynomials 1,x,x?,x3,...? Anyway, orthogonal
polynomials are nothing else than a linear combination of these terms? The reason is
that for example the polynomials x® and x® look similar and are almost linearly
dependent (it is difficult to see the difference by eyes if x8 and x® are properly
normalised). Weight functions and base functions should be as different (linearly
independent) as possible. See different shapes of orthogonal polynomial on the next

slide. remark: May be you know, that linear polynomial regression fails for polynomials of degree 7 and higher. The reason
are round-off errors and impossibility to resolve coefficients at higher order polynomial terms (using arithmetic with finite number
of digits). You can perform linear regression with orthogonal polynomials of any degree without any problem.

There is other reason. Given a function T(X) it is quite easy to calculate coefficients
of linear combination without necessity to solve a system of algebraic equations:

T(X) =D T,P;(x)
1=0 \ b

T, = j P, (X)T (x)dx

a Proof!!!



IS

nomia

Ol

Hl Orthogonal

B ﬁﬁ .

(T 1ﬂ// ]
S X - m
&
o
c .
Naw ]
mVA :
[ 1
L I ]
T [ =
myw/ H
B. I
wVA\ :
Nl VA .
=T \..:U..nn.f.rv.Al.r ]

LIk A !

-
-
-

HERMITE polynomial

=,
-
: -

1.0

0.5

0.0

-0.5

-1.0

e e e e e o T e

e il S T S


http://en.wikipedia.org/wiki/File:Hermite_poly.svg
http://upload.wikimedia.org/wikipedia/commons/e/ec/Hermite_poly.svg
http://upload.wikimedia.org/wikipedia/commons/e/ec/Hermite_poly.svg
http://upload.wikimedia.org/wikipedia/commons/e/eb/Chebyshev_Polynomials_of_the_1st_Kind_%28n%3D0-5%2C_x%3D%28-1%2C1%29%29.svg
http://upload.wikimedia.org/wikipedia/commons/e/eb/Chebyshev_Polynomials_of_the_1st_Kind_%28n%3D0-5%2C_x%3D%28-1%2C1%29%29.svg

- S P ECT RA L METHOD FOURIER EXPANSION

Goniometric functions (sin, cos) are orthogonal in interval (-r,m).
Orthogonality of. P (x)=cos nx follows from

T 1 T
_[cos MX cos nxdx = > j(cos(m —n)X+cos(m+n)x)dx =
1.sin(m—n)x sin(m+n)x
=— ( ) - sin( ) " =m for m=n, otherwise 0
2° m-n m+n Proof!!!

In a similar way the orthogonality of sin nx can be derived. From the Euler’s
formula follows orthogonality of P,- (X) = aliX — cos X +isin jx

I-imaginary unit
Linear combination of P,(x) is called Fourier’s expansion

T(x)=2 TP (x)

The transformation T(x) to T,for j=0,1,2,..., is called Fourier transform and its
discrete form is DFT T(X;), T(X5),.... T(Xy) to T4, T,,...Ty . DFT can be realized by
FFT (Fast Fourier Transform) very effectively.


http://en.wikipedia.org/wiki/Spectral_method

Bl SPECTRAL verioo EXAMPLE

Poisson’s equation (elliptic). This equation describes for example
temperature in solids with heat sources, Electric field, Velocity potential
(inviscid flows). 2T  8°T

=T(xy)

+
8y2 aXZ
Fourier expansion of two variables X,y (i-imaginary unit, not an index)
T(X, y) = ZTjkei(jX+ky) f (X, y) — Z fjkei(jx+ky)
Substituting into PDE Z—Tjk (j2 +k?)e' ) :Z fjkei(jx+ky)

f.
Evaluated Fourier T, = __2—”‘2
coefficients of solution J°+K

Technical realization

»Use FFT routine for calculation f;
»Evaluate T,

»T(Xx,y) by inverse FFT


http://en.wikipedia.org/wiki/Spectral_method

B -INITE ELEMENT method

General characteristics

» Continuous (but not smooth) base as well as weighting functions
» Suitable for complicated geometries and structural problems
»Combination of fluid and structures (solid-fluid interaction)


http://en.wikipedia.org/wiki/Finite_element_method

B8 FINITE ELEMENT method

Base functions N;(x), Ni(x,y) or N,(x,y,z) and corresponding weight functions
are defined in each finite element (section, triangle, cube) separately as a
polynomial (linear, quadratic,...). Continuity of base functions is assured by
connectivity at nodes. Nodes x; are usually at perimeter of elements and are
shared by neighbours.

Base function N; (identical with weight function w;) is associated with node
x; and must fulfill the requirement: N. (Xj) = 5ij (base function is 1 in
associated node, and 0 at all other nodes)

In CFD (2D flow) velocities are approximated by quadratic polynomial (6
coefficients, therefore 6 nodese) and pressures by linear polynomial (3
coefficients and nodes ). Blue nodes © are prescribed at boundary.

Verify number
of coeffs.!




B3 FINITE ELEMENT example

| | o°T 0°T

Poisson’s equation ~+—=1(Xy) i ,
oy-  OX Derive Green’s
MWR and application of Green’s theorem theorem!
2 2
jw( o1 9 T — f(x,y))dQ = —j(a""fBT L WoT +wf (x,y))dQ =0
OX OX oy oy

Base functions are identical with weight function (Galerkin’s method)

T(x) =2 T;N;(x) Wi(x)=Ni(x)

Resulting system of linear algebraic equations for T;

Zj LN LYdQT, = [N, fdO

= x ox oy oy )
S AT, = [N, fd©
j=1




method

General characteristics

»Analytical (therefore continuous) weighting functions. Method evolved
from method of singular integrals (BEM makes use analytical weight
functions with singularities, so called fundamental solutions).

» Suitable for complicated geometries (potential flow around cars,
airplanes... )

»Meshing must be done only at boundary. No problems with
boundaries at infinity.

»Not so advantageous for nonlinear problem.

Introductory course on BEM including Fortran source
codes is freely available in pdf ( 2007)


http://en.wikipedia.org/wiki/Boundary_element_method
http://www3.ntu.edu.sg/home/mwtang/bemsite.htm

BOUNDARY element example

Poisson’s equation

MWR and application of Green’s theorem twice (second derivatives transferred to w)

OT ow  OT ow oT Green’s
_g(&& Ea)dd _!(n vl 5) wdl™ = wadd theorem|

jjT(a_W+a_W)dxdy+j(n WZ—:—T—) (WE—TE))dF:H fwdxdy

Weight functions are solved as a fundamental solution of adjoined equation

Singularity: Delta function at a point x,,y;

:(X_Xi)2+(y_yi)2 Ve“fy'



BOUNDARY element example

T(F)zZN:Tij(F)

At any boundary point .

ap- . , (normal
must be specified either T derivative)
or normal derivative of T, N
not both simultaneously.

I, (fixed T)

A 4



BOUNDARY element example




Bl FINITE VOLUME method

General characteristic:

» Discontinuous weight functions

» Structured, unstructured meshes.

»Conservation of mass, momentum, energy (unlike FEM).
»Only one value is assigned to each cell (velocities, pressures).

Will be discussed in more details in this course


http://en.wikipedia.org/wiki/Finite_volume_method

B8 FINITE VOLUME example

2 2
Poisson’s equation 2 12- + 2 I =f(x,y)
oy~ oX

MWR (Green’s theorem cannot be applied because w(x) is discontinuous)

j w(azzﬁzT il aZT_f( X, ¥))dQ = j (V-VT = f(x,y))dQ =0
o Oy X*

Gauss theorem (instead of Green’s)

j(V.VT— f(x,y))dQ:jﬁ-VTdr—jf(x,y)dgzo

I

[ £, y)dQ = f(x,,yp)h,h,
Q;

f(x y))dQ = j(

(Tl TuTe

yN _yP XW _XP

T T
h, +—=———h,

Ys = Yp




Bl FINITE DIFFERENCES method

General characteristic:

» Substitution derivatives in PDE by finite differences.
» Transformation from computational (rectangular) to physical (curvilinear) domain

Suitable first of all for gas dynamic (compressible flows — aerodynamics)

Will be discussed in more details in this course


http://en.wikipedia.org/wiki/Finite_differences

Bl FINITE DIFFERENCES

Finite differences methods specify zero residuals in selected nodes (the
same requirement as in classical collocation method). However, residuals in
nodes are not calculated from a global analytical approximation (e.g. from
orthogonal polynomials), but from local approximations in the vicinity of zero
residual node.

It is very easy technically: Each derivative in PDE is substituted by finite
difference evaluated from neighbouring nodal values.

=~ Upwind 15t order
OX AX
oT _T..-T
Tiag T ol e [ "L Central differencing 25t order
AX
OX 2AX

O°T T.,-2T +T,
ox> AX®

Central differencing 2st order

Verify!



http://en.wikipedia.org/wiki/Finite_differences

Bl FINITE DIFFERENCES example

o°T O°T

Poisson’s equation ~z PY: =\1: (X, Y)
Ti—l,j _2Ti,j +Ti+l,j +Ti,j_1_2Ti,j +Ti,j+1 _f
AX2 Ay’ -

Eliptic equation — it is
necessary to solve a large
system of algebraic equations



http://en.wikipedia.org/wiki/Finite_differences

Bl FINITE DIFFERENCES example

Wave equation (pure convection)
Hyperbolic PDE-it is possible to oT c oT

use explicit method ot M ox L exact solution
T(t,x)=T(x—ct
Lax Wendroff method

t

"1 First step — Lax’s scheme with time step At/2

AU/2 2 T —Te ~0 2 ¢ T =T ~0

+C
t At/ 2 AX At/ 2 AX

+ t,,  >econd step—central differences
At N N
R e O u +C Tkr-li-l:}-/zz _Tkn—l:y22 — O
At AX
J\ tn
Ax T t
n+1/2


http://en.wikipedia.org/wiki/Finite_differences

Bl FINITE DIFFERENCES example

Wave equation (pure convection)

Stability restriction when using
explicit methods

CAt
CFL=—-x«<1
AX
dt:oOll,czl,lzl’n:lOl’dX:V(n-l)’ cfl=c*dt/dx 045 o 02 53 % xo[,[:]] i i 55 5 1
fori=1:n
x(1)=(i-1)*dx;
if x(i)<0.1 in this case the PDE
t0(i)=0; is integrated along —
else characteristic CFL=1
t0(i)=1;
end
end
tmax=1.;itm=tmax/dt; o :
for |t:1'|tm Oxmlz 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
for i=2:n-1 2'27
ta(i)=(t0(i-1)+t0(i))/2-cfl*(t0(i)-t0(i-1))/2; ol _
- CFL=1.1
ta(1)=t0(1);ta(n)=t0(n); o
for i=2:n-1 .
t(i)=to(i)-cfl*(ta(i+1)-ta(i)); o5l
end 4
t(1)=t0(1);t(n)=t0(n);
tres(it,:)=t(:); tO=t; 2L
end 25

[ [ [ [ [ [ [ [ [
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1


http://en.wikipedia.org/wiki/Finite_differences

methods

General characteristics

»Not available in commercial software packages
» Suitable for problems with free boundary
»Multiphase problems

»Easy remeshing (change of geometry) / in fact no meshing is necessary


http://en.wikipedia.org/wiki/Meshless_method

methods

There exist many methods that can be classified as meshless, for example

(smoothed particle hydrodynamics), (model od particles),
(Reproducing Kernel Particle method, Liu: ), (Meshless
Local Petrov Galerkin), (Radial basis function, ). All the methods

approximate solution by the convolution integrals

h/= - - = - N [
O"(X)=| (%) W= h)Dd(y)dy
Q correction aplied classicalSP I—\If-convolutim
at MLS, RKP methods

Recommended literature: shaofan Li, Wing Kam Liu: Meshfree Particle Method, Springer Berlin 2007
(MONOGRAPhy analyzing most of the mentioned method and applications in mechanics of elastoplastic materials, transient
phenomena, fracture mechanics, fluid flowm biological systems, for example red blood cell flow, heart vale dynamics). Summary
of Galerkin Petrov integral methods Atluri S.N., Shen S.: The meshless local Petrov Galerkin (MLPG) method, CMES, vol.3,
No.1, (2002), pp.11-51. Collocaton method: Shu C., Ding H., Yeo K.S.: Local radial basis function-based differential quadrature
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MESHLESS methods collocation

Radial base functions N j (X) = gp(rj)

where Iy = HX — X, H is simply a distance from node |.

Most frequently used radial base functions

linear o(r)=r

cubic o(r)=r°

Gaussian o(r) = g

multiquadrics o(r) = [r2 42
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2 2
O+ T =t(x)
oy: oX

Poisson’s equation

Boundary conditions T =9(x,Y)

Approximation T(X,Y) =Zn:Tj(p(rj) I =(X—X,-)2 +(y_yj)2
j=1

i=1,2,....,N n 0%p(r;) O e(r;)
(inner points) : ( T oy )Ty =106, y:)

iI=N+1,N+2,...,
(boundary)
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Result is a system of n-linear algebraic equations that can be solved by any
solver. In case of more complicated and nonlinear equations (Navier Stokes
equations) the system can be solved for example by the least square
optimization method, e.g. Marquardt Levenberg.

Few examples of papers available from Science Direct

Applied Mathematical Modelling 32 (2008) 1848 1858

Direct solution of Navier—Stokes equations

by radial basis functions

G. Demirkaya 2, C. Wafo Soh ®, O.J. Ilegbusi **
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Abstract

The pressure—velocity formulation of the Navier—Stokes (N-5) equation 15 solved using the radial basis functions (RBF)
collocation method. The non-linear collocated equations are solved using the Levenberg—Margquardt method. The primary
novelty of this approach is that the N-8 equation 1s solved directly, instead of using an iterative algonthm for the primitive
variables. Two flow situations are considered: Couette flow with and without pressure gradient, and 2D laminar flow in a
duct with and without flow obstruction. The approach i1s validated by comparnng the Couette low results with the analyt-
ical solution and the 2D results with those obtained using the well-validated CFD-ACE™ commercial package.

@ 2007 Published by Elsevier Inc.

Keywords: Meshless method; Radial basis functions; Navier-5Stokes equations

2.2, Governing eguation

In this section, the new RBF method 1s described. It 15 then used to predict the velocity and pressure dis-
tribution in a two-dimensional channel flow. The flow 18 assumed to be steady, viscous and incompressible.
The Navier—Stokes equations for the flow in Cartesian coordinates are

Cu Ct
= f— = 0 (1)
Cx &)
ot Cou” op* 1l /focu® Ouw' £
W+ ==+ |\t ): (<)
Cx oy Cix Re \ Ox**  Op*
" Cop” o' 1 /fovt ot o
W —+ ==+ —+t== (3)
C oy oy Re \ Gx*  Oy*

in which all variables are non-dimensionalized, «” and v® represent the velocity components in the Cartesian
coordinate directions x™ and y”, respectively, p” is the pressure, and Re is the Reynolds number (pU..D/ )
where D i1s the characteristic length of the domain, and p.. and U._. are the reference density and mean veloc-
ity, respectively. The Cartesian coordinates x™ and y* are non-dimensionalized with respect to D, v~ and v™ are
non-dimensionalized with respect to U.., and finally, p” is non-dimensionalized with respect to the dynamic
pressure g L-"_:k_
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2.3.2. Radial basis function { RBF)

Consider the problem of finding a function whose values are known at a finite number of locations N. We
may solve this problem by assuming that the unknown function 1s a linear combination of a complete set of N
tunctions. The coeflicients of the linear combination are obtained by solving a linear system resulting from forc-
ing the linear combination to take the given values at the NV locations. In the RBF approach the complete set of
N functions are translated radial functions. Specifically, the approximation of a function f{x), using RBF is

f(x) 2 P (|lx = x). (4)
=1

where || || is the Euclidian norm, N is the number of total collocation points, o;'s are the unknown coefficients
to be determuned and ¥ 1s the radial basis tunction. The interpolation coetlicients oy, o4, . ... 2y are determined
by solving the linear system of equations:

_

fla) =Y oy P(ry), i=1

j=1
where r; = 1,” [x; — x; }:. The system of Eq. (5) can be written as
w(0) P(rn) Yirs) - Pl o

P(ry) W(0O0) Wirs) - Pirw)

Fra)  Wira) ) Wraw)

g

(a) Multi-quadratics (MQs): ¥(r) = +/r2 4 2 ¢ = (.

5) Thin-plate splines (TPS): P(r) J_::i]ug[r]_ n is ;@ This r_adia-l base function (TPS) was
used in this paper

—

(c) Gaussians Firr—=¢ —r—=—1}
(d) Inverse MQs: WP(r) = ——




MESHLESS method EXAMPLE RBF

2.4. Expansion of the Navier—Stokes and boundary conditions by RBF

The velocity and pressure terms are globally expanded by collocation of all the points on the boundary and
domain as

NB4+NI
U = E i, P(|F—7F) i=12 (" =w, and " =u,), (8)
a=1

MNB4MI

;}L — Z s P ”?: I,” ::I. ( 9:}

where NB 1s the total number of boundary points enclosed in the domain, NI 1s the total internal points in the
domain, x; are the expansion coethicients and ¥ is the radial basis expansion function.

The Navier—Stokes and boundary condition equations together constitute a system of non-linear equations,
which are to be solved. The expanded velocity and pressure terms and their first and second derivatives are
directly inserted into the equations. The boundary condition equations are collocated at the boundary points
(i=1..NB) and the continuity and momentum equations are collocated at the interior domain points
(i=NB-+1...NB+ NI). Then a non-hnear system of equations for the unknown expansion coefhicient =« 15
formed as

Flo) =0. Shear Stress along the lower wall
This non-hinear system can be solved by the least-square optimiza

] . AD0E-0T -
quardt method [30-32]. The Levenberg—Marquardt algorithm 1s
. . . . . . - 3 30E-0T A — :
mum of a multivariate function that 1s expressed as the sum of st . e
. : ) - = | = = = CFD-ACE
has become a standard technique for non-linear least-squares pro g N
[30-32] tor further details of this method. > 250807
e
Wl
u
=¥
L
i
= @
ZE=Z=Z= =2 .
=1k =
=%
(&) REF

4]
-SAME-O8
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Engineering Analysis with Boundary Elements 33 (2009) 1045-1061

Contents lists available at ScienceDirect

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

A localized collocation meshless method (LCMM) for incompressible flows

CFD modeling with applications to transient hemodynamics
Z. El Zahab?, E. Divo®, A]. Kassab®*

* Department of Mechanmical Materak and Aemospace Engineering. University of Central Aorida, USA
" Engineering Technology Department, University of Central Florida, PO, Box 62450, Orlando, FL 32816-2450, 154

ARTICLE INFO ABSTRACT

Article history: The cumrent paper reports on the development and validation of a localized collecation meshless
Received 30 Cotober 2008 method (LCMM ) to model laminar incompressible flows. A high order upwinding scheme was devised
Accepted 18 March 2009 to dampen the numerical oscillations arising in convection-dominated flows, Subsequently, the LCMM
Available online 15 May 2009 was analytically validated and demonstrated to yield third-order accurate solutions when compared to
Kewweords: a benchmark analytical decaying vortex solution. Numerical validations are provided by comparison
Meshless methods with the finite volume commercial (FVM) solver Fluent 6.2. The flow geometry for the numerical
':FD. . validation arises from a biomedical application that consists of modeling blood flow in the inter
Upwinding connection between a bypass graft and an artery. Very good agreement was found between the LCMM

Limiters and the FVM.
Incompressible flows

& 2009 Elsevier Lid. All rights reserved.
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2. The LCMM spatial discretizations . The local topol build-up

In the LCMM, spatial di: zation is performed ¢ 0 x « domai . and interior of the
wrmly distributed points. Each computa oint C T a dat that Hits a
'  points, and t - 3 of n PO to up a localized
an handle the irr t Le interpolation t It is over topology of points that the
of the localized mes formula- a5t 2 g [ the LCMM
n collocation and the polynomial
with MLS treatment. o ] ( Le r.1| numb

and the ne
® Data Center . . na
@ Influence Point 2

s expanded.
Il.1r.|_rl until it encompasses ‘ibed number
» points, The number of influence points depends on|
whether the data center is on the boundary or in the interior. For
the data cent on the boundary, the inflated arcle is taken to
encompass a minimum of 18 points in a 2D space. The build-up of

a ty | topology for a boundary data center in 2D shown in
Fig. 1{a). It is important to mention that the topology around any

-

The localized RBF collocation

The wvalue of a field v vle, say ¢, can be collocated at an
arbitrary point i within rILI local topology by a RBF interpolat

TR = |rf|xrr |

whe ent ame r is a shape parameter,
and rjixg) e dide » fro i ) *h
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Moreover, to ensure that constant and linear fields are exactly
captured, the RBF local interpolation expressed in Eg. (1) is
completed by the addition of a polynomial. As such, the feld
variable at an arbitrary point i within the local topology can be
recast such as

NF NF*
By =3 oyx) + 3 oty Pilx) (8)
I=1 J=l
Incorporating completeness conditions in the collocation
process leads to the augmented collocation matrix equation:

S1(Xa) FnplXy) Piixg) ... Prp( Xy)

FxnF) oo ¥nAXnp) PuXnp) ... Prp(XwF)
Piixgy ... Pl Xnp) 0 0

| Prpe(X1) ... Pupe(Xnr)
2y b

PuF
0

\ ENFP , 0
The polynomial enrichment will subsequently take effect on the
evaluation of the multiplication vector [.%°] that is expressed in Eq.
(7], and this is a straightforward extension.

2.3, The polynomial MLS approsdmation

The wvalue of the field variable ¢ can be alternatively
approximated at an arbitrary point § within the local topology
by the MLS-based polynomial interpolation. This is alternative
manner to evaluate ¢ in addition to the local RBF collocation, and
this approach is effective in determining one-sided derivatives

that appear in the convective terms of the fluid flow momentum
conservation equations. The approximated value of ¢ can be set to
be equal to the multiplication of a polynomial basis vector Pand a
polynomial coefficients vector 8. Each entry in P is a monomial
and the total number of those entries is denoted by NP. The value
of ¢ at an arbitrary point § within the local topology is
approximated as

NP
Hix) = S " Piix)f; (10]
J=1
The polynomial basis vector can have as many entries as
desired. For example, Eq. (11) shows a polynomial basis vector in a
2D Cartesian coordinate system, taken up to the first six entries of
the Pascal triangle

Pix) =

Increasing NP leads to a high-order approximation as well as to
an increase in the computational cost. The number of points in the
local topology NF should be at least equal to NP to avoid numerical
instabilities.

A standard least squares fit is accomplished by first defining
scalar measure, E, of the sum of the squares of the errors between
the nodal value ¢ and the polynomial expansion approximation qf:
at each point of the local topology as

NF_ . N NP i
E=> (i~ =2 [~ > Pjix; )i
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3. The LCMM upwinding technigue

Evaluat the field variable f
the i

Onvec ; rlu flow
rh the

31. The LCMM upwinding and limiter sc

to such a modified topology as the
.n rlu upwind Op o the data c
wmber of
from NF to NU, Inst 0 he
drawn I'|T1|u the data ¢ 0
ks that ar sable for the upwin
can be
ed to as the
m poaints will then b
Then, the data
as it adds mo
iling process. S ter all, the upwind
the

appea
equation

Tupy
no lon
duced

it limiter

th limiter
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|,' l'.ll Waveform
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Fig. 22. The femoral flow waveform at the conventional ETSDW geometry inlet.

Fig 23. Meshless (a) and FVM (b) velocity contours at t, vulh |UHUId| flow.
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Fig 24 Meshless (a) and FVM (b) velocity contours at £z with femoral flow.
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