
Remark: foils with „black background“ can 

be skipped, they are aimed to the more 

advanced courses

Rudolf Žitný, Ústav procesní a 

zpracovatelské techniky ČVUT FS 2013

Overview of CFD

numerical methods       

Computer Fluid Dynamics E181107
CFD2

2181106

http://en.wikipedia.org/wiki/Computational_fluid_dynamics


CFD and PDECFD2

CFD problems are described by transport partial differential equations (PDE) of the 

second order (with second order derivatives). These equations describe transport of 

mass, species, momentum, or thermal energy. Result are temperature, velocities, 

concentrations etc. as a function of x,y,z and time t 

PDE of second order are classified according to signs of coefficients at highest 

derivatives of dependent variable  (for more details, see next slides):

Hyperbolic equations (evolution, typical for description of waves, finite speed of information transfer)

Parabolic equations (evolution problems, information is only in the direction of evolution variable t -

usually time but it could be also distance from the beginning of an evolving boundary layer)

Eliptic equations (typical for stationary problems, infinite speed of information transfer)
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convection by velocity c

Examples: supersonic flow around a plane, flow in a Laval 

nozzle, pulsation of gases at exhaust or intake pipes

Examples: evolution of boundary layer (in this case t-

represents  spatial coordinate in the direction of flow and x 

is coordinate perpendicular to the surface of body)

Examples: subsonic flows around bodies (spheres, 

cylinders), flow of incompressible liquids



CFD and PDECFD2

Why is it important to distinguish types of PDE?

Because different methods are suitable for different 

types (e.g. central differencing in elliptical region 

and time marching schemes in hyperbolic or 

parabolic regions) 



Characteristics (1/3)CFD2

f can be function of x,y,

and first derivatives.

y
x(),y()-parametrically defined curve, where 

first derivatives p(),q() are specified

x



Characteristics (2/3)CFD2

Right hand side is fully 

determined by prescribed first 

derivatives (by boundary 

conditions) along selected curve

Proof!!!



Characteristics (3/3)CFD2

Is the solution of quadratic 

equation correct? Check signs.



Characteristics CFD2
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PDE type - example CFD2

One and the same equation can be in some region elliptic, in other hyperbolic 

(for example regions of subsonic and supersonic flow, separated by a shock 

wave). 

An example is Prandl-Glauert equation describing steady, inviscid, 

compressible and isentropic (adiabatic) flow of ideal fluid around a slender body 

(e.g. airfoil)
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Function (x,y) is velocity potential, M is Mach number (ratio of velocity of 

fluid and speed of sound). For M<0 (subsonic flow region) the equation is 

elliptic, for M>1 (supersonic flow) the equation is hyperbolic. See wikipedia.

Another example: Laval nozzle

http://en.wikipedia.org/wiki/Prandtl-Glauert_equation
http://en.wikipedia.org/wiki/Shock_wave
http://en.wikipedia.org/wiki/Laval_nozzle
http://upload.wikimedia.org/wikipedia/commons/e/ed/FAA-8083-3A_Fig_15-9.png
http://upload.wikimedia.org/wikipedia/commons/e/ed/FAA-8083-3A_Fig_15-9.png


PDE type – example PWV CFD2

Pulse Wave Velocity in elastic pipe 

(latex tube, arteries)

Model-hyperbolic equations

Experiment-cross correlation technique 

using high speed cameras

Macková, H. - Chlup, H. - Žitný, R.: Numerical model 

for verification of constitutive laws of blood vessel 

wall. Journal of Biomechanical Science and 

Engineering. 2007, vol. 2, no. 2/1, p. s66.



PDE type – example WHCFD2

Water Hammer experiment with elastic 

pipe (latex tube, artificial artery)

Model-hyperbolic equations

Experiment-cross correlation technique 

using high speed cameras

Pressure sensors
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CFD2 Hyperbolic equations WH
Flows in a pipe. Time dependent cross section A(t,x), or time dependent mean 

velocity v(t,x). Compressible fluid or elastic pipe. Relationship between volume and 

pressure is characterised by modulus of elasticity K [Pa]

Problem is to predict pressure and flowrate courses along the pipeline p(t,x), v(t,x). 

Basic equations: continuity and momentum balance (Bernoulli). In simplified form
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CFD2 Hyperbolic equations WH
How to derive equations of characteristics
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CFD2 Hyperbolic equations WH
There are two characteristic lines corresponding to two values of  

A

C

x1=at

Integration along the characteristic line from A to C

B

x2=-at

Integration along the characteristic line from B to C



Method of characteristicCFD2
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Method of characteristicCFD2

l=1;d=0.01;rho=1000;f=0.1;a=1;p0=2e3;

v0=(p0*2*d/(l*rho*f))^0.5

n=101;h=l/(n-1);v(1:n)=v0;p(1)=p0;

for i=2:n

p(i)=p(i-1)-f*rho*v0^2*h/(2*d);

end

dt=h/a;tmax=3;itmax=tmax/dt;fhr=f*h/(2*a*d);   

for it=1:itmax

t=it*dt;

for i=2:n-1

pa=p(i-1);pb=p(i+1);va=v(i-1);vb=v(i+1);

pc(i)=a/2*((pa+pb)/a+rho*(va-vb)+fhr*(vb*abs(vb)-va*abs(va)));

vc(i)=0.5*((pa-pb)/(rho*a)+va+vb-fhr*(vb*abs(vb)+va*abs(va)));

end

pc(1)=p0;    vb=v(2);pb=p(2);

vc(1)=vb+(pc(1)-pb)/(a*rho)-fhr*vb*abs(vb);

vc(n)=v0*valve(t);    va=v(n-1);pa=p(n-1);

pc(n)=pa-rho*a*(vc(n)-va)+f*h*rho/(2*d)*va*abs(va);

vres(it,1:n)=vc(1:n);    pres(it,1:n)=pc(1:n);

p=pc;v=vc;

end

pmax=max(max(pres))/p0

x=linspace(0,1,n);

time=linspace(0,tmax,itmax);

contourf(x,time,pres,30)
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Pressure profiles

Pipe L=1m, D=0.01 m, speed of sound a=1 m/s, inlet pressure 2 kPa (steady velocity v=0.6325 m/s).



Method of characteristicCFD2

Incorrect boundary condition at exit (elastic and rigid tube connection)
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Method of characteristicCFD2

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-400

-200

0

200

400

600

n=401,Le=0, pmax=669

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-600

-400

-200

0

200

400

600

n=401,Le=0.5, pmax=669

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-400

-200

0

200

400

600

n=401,Le=1, pmax=709

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-400

-200

0

200

400

600

n=401,Le=2, pmax=803

0 0.5 1 1.5 2 2.5 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

function vrel=pump(t)

vrel=0.5*sin(3*t);
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Classical numerical methods (Lax Wendroff), require at least slightly flexible 

connected pipe. MOC seems to be working with a rigid pipe too?



NUMERICAL METHODS CFD2

The following slides are an attempt to 

overview frequently used numerical 

methods in CFD. It seems to me, that all 

these methods can be classified as specific 

cases of Weighted Residual Methods.

Schiele



MWR methods of weighted residualsCFD2

Principles of Weighted Residual Methods will be demonstrated for a typical 

transport equation (steady state) – transport of matter, momentum or energy
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Convective 

transport
Dispersion 

(diffusion)
Inner sources

Numerical solution (x,y,z) is only an approximation and the previous equation will

not be satisfied exactly, therefore the right hand side will be different from zero
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res(x,y,z) is a RESIDUAL of differential equation. A good approximation 

should exhibit the smallest residuals as possible, or zero weighted residuals
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wi are selected weighting functions, and V is the whole analyzed region.



Approximation – base CFD2

Approximation is selected as linear combination of BASE functions Nj(x,y,z)
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Substituting into weighted residuals we obtain system of algebraic equations for 

coefficients I (N-equations for N-selected weight functions wi)



Weighting functionsCFD2

Weighting functions can be suggested more or less arbitrarily in advance and 

independently of calculated solution. However there is always a systematic 

classification and families of weighting functions. Majority of numerical methods can 

be considered as MWR corresponding to different classes of weighting functions

Spectral methods (analytical wi(x))

Finite element methods (Galerkin – continuous weighting function)

Control volume methods (discontinuous but finite weighting function)

Collocation methods (zero residuals at nodal points, infinite delta functions) 
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(or Finite Volume methods)

(Boundary element methods)

(Finite Differences)



SPECTRAL METHOD ORTHOGONAL FUNCTIONS
CFD2

General characteristics

Analytical approximation (analytical base functions)

Very effective and fast (when using Fast Fourier Transform)

Not very suitable for complex geometries (best case are rectangular regions)
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http://en.wikipedia.org/wiki/Spectral_method


SPECTRAL METHOD ORTHOGONAL POLYNOMIALS
CFD2

Weight functions and base functions are selected as ORTHOGONAL functions (for 

example orthogonal polynomials) Pj(x). Orthogonality in the interval x (a,b) means
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In words: scalar product of 

different orthogonal

functions is always zero.

http://en.wikipedia.org/wiki/Spectral_method


WHY ORTHOGONAL?CFD2

Why not to use the simplest polynomials 1,x,x2,x3,…? Anyway, orthogonal 

polynomials are nothing else than a linear combination of these terms? The reason is 

that for example the polynomials x8 and x9 look similar and are almost linearly 

dependent (it is difficult to see the difference by eyes if x8 and x9 are properly 

normalised). Weight functions and base functions should be as different (linearly 

independent) as possible. See different shapes of orthogonal polynomial on the next 

slide. Remark: May be you know, that linear polynomial regression fails for polynomials of degree 7 and higher. The reason 

are round-off errors and impossibility to resolve coefficients at higher order polynomial terms (using arithmetic with finite number 

of digits). You can perform linear regression with orthogonal polynomials of any degree without any problem.

There is other reason. Given a function T(x) it is quite easy to calculate coefficients 

of linear combination without necessity to solve a system of algebraic equations:
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Proof!!!



Orthogonal polynomials CFD2

HERMITE polynomial                            TSCHEBYSHEF I. polynomial

http://en.wikipedia.org/wiki/File:Hermite_poly.svg
http://upload.wikimedia.org/wikipedia/commons/e/ec/Hermite_poly.svg
http://upload.wikimedia.org/wikipedia/commons/e/ec/Hermite_poly.svg
http://upload.wikimedia.org/wikipedia/commons/e/eb/Chebyshev_Polynomials_of_the_1st_Kind_%28n%3D0-5%2C_x%3D%28-1%2C1%29%29.svg
http://upload.wikimedia.org/wikipedia/commons/e/eb/Chebyshev_Polynomials_of_the_1st_Kind_%28n%3D0-5%2C_x%3D%28-1%2C1%29%29.svg


SPECTRAL METHOD FOURIER EXPANSION
CFD2

Goniometric functions (sin, cos) are orthogonal in interval (-,).

Orthogonality of. Pn(x)=cos nx follows from
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In a similar way the orthogonality of sin nx can be derived. From the Euler’s 

formula follows orthogonality of jxijxexP ijx
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Linear combination of Pj(x) is called Fourier’s expansion 





0

)()(
j

jj xPTxT

Proof!!!

The transformation T(x) to Tj for j=0,1,2,…, is called Fourier transform and its 

discrete form is DFT T(x1), T(x2),…. T(xN) to T1,T2,…TN . DFT can be realized by 

FFT (Fast Fourier Transform) very effectively.

i-imaginary unit

http://en.wikipedia.org/wiki/Spectral_method


SPECTRAL METHOD EXAMPLECFD2

Poisson’s equation (elliptic). This equation describes for example 

temperature in solids with heat sources, Electric field, Velocity potential 

(inviscid flows).
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Use FFT routine for calculation  fjk
Evaluate Tjk

T(x,y) by inverse FFT

http://en.wikipedia.org/wiki/Spectral_method


FINITE ELEMENT methodCFD2

General characteristics

Continuous (but not smooth) base as well as weighting functions

Suitable for complicated geometries and structural problems

Combination of fluid and structures (solid-fluid interaction)

http://en.wikipedia.org/wiki/Finite_element_method


FINITE ELEMENT methodCFD2
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Base functions Ni(x), Ni(x,y) or Ni(x,y,z) and corresponding weight functions 

are defined in each finite element (section, triangle, cube) separately as a 

polynomial (linear, quadratic,…). Continuity of base functions is assured by 

connectivity at nodes. Nodes xj are usually at perimeter of elements and are 

shared by neighbours.

Base function Ni (identical with weight function wi) is associated with node 

xi and must fulfill the requirement:                               (base function is 1 in 

associated node, and 0 at all other nodes)
ijji xN )(

In CFD (2D flow) velocities are approximated by quadratic polynomial (6 

coefficients, therefore 6 nodes   ) and pressures by linear polynomial (3 

coefficients and nodes    ).  Blue nodes      are prescribed at boundary.

Verify number 

of coeffs.!



FINITE ELEMENT exampleCFD2
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Poisson’s equation

MWR and application of Green’s theorem

Base functions are identical with weight function (Galerkin’s method)

wi(x)=Ni(x)

Resulting system of linear algebraic equations for Ti

Derive Green’s 

theorem!



BOUNDARY element methodCFD2

General characteristics

Analytical (therefore continuous) weighting functions. Method evolved 

from method of singular integrals (BEM makes use analytical weight 

functions with singularities, so called fundamental solutions). 

Suitable for complicated geometries (potential flow around cars, 

airplanes… )

Meshing must be done only at boundary. No problems with 

boundaries at infinity.

Not so advantageous for nonlinear problem.

Introductory course on BEM including Fortran source 

codes is freely available in pdf ( Whye-Teong Ang 2007)

http://en.wikipedia.org/wiki/Boundary_element_method
http://www3.ntu.edu.sg/home/mwtang/bemsite.htm


BOUNDARY element exampleCFD2
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Singularity: Delta function at a point xi,yi Delta function!

Solution (called Green’s function) is

Verify!
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Substituting w=wi (Green’s function at point i)
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Solution T at arbitrary point xi,yi is expressed in terms of boundary values

dΓ

Γ2 (normal 

derivative)
Γ1 (fixed T)

At any boundary point 

must be specified either T

or normal derivative of T, 

not both simultaneously.
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dΓ

Γ2 (normal 

derivative)
Γ1 (fixed T)
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Values at boundary nodes not specified as boundary conditions must be 

evaluated from the following system of algebraic equations:
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Will be discussed in more details in this course

General characteristic: 

Discontinuous weight functions

Structured, unstructured meshes.

Conservation of mass, momentum, energy (unlike FEM).

Only one value is assigned to each cell (velocities, pressures).

http://en.wikipedia.org/wiki/Finite_volume_method
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Poisson’s equation

MWR (Green’s theorem cannot be applied because w(x) is discontinuous)

Gauss theorem (instead of Green’s)
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hx



FINITE DIFFERENCES methodCFD2

Will be discussed in more details in this course

General characteristic: 

Substitution derivatives in PDE by finite differences.

Transformation from computational (rectangular) to physical (curvilinear) domain

Suitable first of all for gas dynamic (compressible flows – aerodynamics) 

http://en.wikipedia.org/wiki/Finite_differences


Finite differences methods specify zero residuals in selected nodes (the 

same requirement as in classical collocation method). However, residuals in 

nodes are not calculated from a global analytical approximation (e.g. from 

orthogonal polynomials), but from local approximations in the vicinity of zero 

residual node.

It is very easy technically: Each derivative in PDE is substituted by finite 

difference evaluated from neighbouring nodal values.

FINITE DIFFERENCESCFD2
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Upwind 1st order

Central differencing 2st order

Central differencing 2st order

Verify!

http://en.wikipedia.org/wiki/Finite_differences
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Eliptic equation – it is 

necessary to solve a large 

system of algebraic equations

http://en.wikipedia.org/wiki/Finite_differences
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http://en.wikipedia.org/wiki/Finite_differences
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Wave equation (pure convection)
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1

x [m]

CFL=0.1

CFL=1

CFL=1.1

dt=0.011;c=1;l=1;n=101;dx=l/(n-1); cfl=c*dt/dx

for i=1:n

x(i)=(i-1)*dx;

if x(i)<0.1

t0(i)=0;

else

t0(i)=1;

end

end

tmax=1.;itm=tmax/dt;

for it=1:itm

for i=2:n-1

ta(i)=(t0(i-1)+t0(i))/2-cfl*(t0(i)-t0(i-1))/2;

end

ta(1)=t0(1);ta(n)=t0(n);

for i=2:n-1

t(i)=t0(i)-cfl*(ta(i+1)-ta(i));

end

t(1)=t0(1);t(n)=t0(n);

tres(it,:)=t(:);    t0=t;

end

Stability restriction when using 

explicit methods 

1



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x

tc
CFL

in this case the PDE 

is integrated along 

characteristic

http://en.wikipedia.org/wiki/Finite_differences


MESHLESS methodsCFD2

General characteristics

Not available in commercial software packages

Suitable for problems with free boundary

Multiphase problems

Easy remeshing (change of geometry) / in fact no meshing is necessary

http://en.wikipedia.org/wiki/Meshless_method
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Recommended literature: Shaofan Li, Wing Kam Liu: Meshfree Particle Method, Springer Berlin 2007  

(MONOGRAPhy analyzing most of the mentioned method and applications in mechanics of elastoplastic materials, transient 

phenomena, fracture mechanics, fluid flowm biological systems, for example red blood cell flow, heart vale dynamics). Summary

of Galerkin Petrov integral methods  Atluri S.N., Shen S.: The meshless local Petrov Galerkin (MLPG) method, CMES, vol.3, 

No.1, (2002), pp.11-51. Collocaton method: Shu C., Ding H., Yeo K.S.: Local radial basis function-based differential quadrature 

method and its application to solve two dimensional incompressible Navier Stokes equations, Comp.Methods Appl.Mech.Engng, 

192 (2003), pp.941-954

There exist many methods that can be classified as meshless, for example SPH

(smoothed particle hydrodynamics), Lattice Boltzman (model od particles), RKP

(Reproducing Kernel Particle method, Liu:large deformation Mooney), MLPG (Meshless 

Local Petrov Galerkin), RBF (Radial basis function, wave equation). All the methods 

approximate solution by the convolution integrals


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 ydyhyxwyxcxh 
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nconvolutio-SPH classical
methods RKP MLS,at 

 aplied correction
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http://en.wikipedia.org/wiki/Meshless_method
http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
http://en.wikipedia.org/wiki/Lattice_Boltzmann_methods
https://netfiles.uiuc.edu/aluru/www/Journals/CompMech99.pdf
http://www.ce.berkeley.edu/~shaofan/doc/paper4.pdf
http://www.care.eng.uci.edu/pdf/(98.4).pdf
http://drna.di.univr.it/papers/2011/SpecialIssue.2011.KFA.pdf
http://www.internonlinearscience.org/upload/papers/IJNS Vol 13 No 1 Paper 3 Numerical Solutions of the MRLW Equation Using.pdf
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Most frequently used radial base functions
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Poisson’s equation

Boundary conditions

Approximation

i=1,2,….,N  

(inner points)

i=N+1,N+2,…,n 

(boundary)

For multiquadric radial function
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Result is a system of n-linear algebraic equations that can be solved by any 

solver. In case of more complicated and nonlinear equations (Navier Stokes 

equations) the system can be solved  for example by the least square 

optimization method, e.g. Marquardt Levenberg.

Few examples of papers available from Science Direct
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This radial base function (TPS) was 

used in this paper

MESHLESS method EXAMPLE RBFCFD2



Comparison with results obtained by FVM package CFD-ACE

MESHLESS method EXAMPLE RBFCFD2
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Local topology: 

each point is 

associated with 

nearest NF 

points 

……

This is Hardy 

multiquadrics radial 

base function

MESHLESS method EXAMPLE RBFCFD2
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Moving  Least Squares



Benchmark-pure 

convection

MESHLESS method EXAMPLE RBFCFD2



FLUENT 6.2

MESHLESS method EXAMPLE RBFCFD2
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Elsevier

500 articles on 

Meshless 

Navier Stokes


